Suppr超能文献

关于机器学习在预测不同类型混凝土性能方面应用的系统文献综述。

Systematic literature review on the application of machine learning for the prediction of properties of different types of concrete.

作者信息

Hassan Syeda Iqra, Syed Sidra Abid, Ali Syed Waqad, Zahid Hira, Tariq Samia, Mohd Su Ud Mazliham, Alam Muhammad Mansoor

机构信息

Electrical/Electronic Engineering, British Malaysian Institute, Universiti of Kuala Lumpur, Kuala Lumpur, Malaysia.

Electrical Engineering, Ziauddin University, Karachi, Sindh, Pakistan.

出版信息

PeerJ Comput Sci. 2024 May 16;10:e1853. doi: 10.7717/peerj-cs.1853. eCollection 2024.

Abstract

BACKGROUND

Concrete, a fundamental construction material, stands as a significant consumer of virgin resources, including sand, gravel, crushed stone, and fresh water. It exerts an immense demand, accounting for approximately 1.6 billion metric tons of Portland and modified Portland cement annually. Moreover, addressing extreme conditions with exceptionally nonlinear behavior necessitates a laborious calibration procedure in structural analysis and design methodologies. These methods are also difficult to execute in practice. To reduce time and effort, ML might be a viable option.

MATERIAL AND METHODS

A set of keywords are designed to perform the search PubMed search engine with filters to not search the studies below the year 2015. Furthermore, using PRISMA guidelines, studies were selected and after screening, a total of 42 studies were summarized. The PRISMA guidelines provide a structured framework to ensure transparency, accuracy, and completeness in reporting the methods and results of systematic reviews and meta-analyses. The ability to methodically and accurately connect disparate parts of the literature is often lacking in review research. Some of the trickiest parts of original research include knowledge mapping, co-citation, and co-occurrence. Using this data, we were able to determine which locations were most active in researching machine learning applications for concrete, where the most influential authors were in terms of both output and citations and which articles garnered the most citations overall.

CONCLUSION

ML has become a viable prediction method for a wide variety of structural industrial applications, and hence it may serve as a potential successor for routinely used empirical model in the design of concrete structures. The non-ML structural engineering community may use this overview of ML methods, fundamental principles, access codes, ML libraries, and gathered datasets to construct their own ML models for useful uses. Structural engineering practitioners and researchers may benefit from this article's incorporation of concrete ML studies as well as structural engineering datasets. The construction industry stands to benefit from the use of machine learning in terms of cost savings, time savings, and labor intensity. The statistical and graphical representation of contributing authors and participants in this work might facilitate future collaborations and the sharing of novel ideas and approaches among researchers and industry professionals. The limitation of this systematic review is that it is only PubMed based which means it includes studies included in the PubMed database.

摘要

背景

混凝土作为一种基本的建筑材料,是包括沙子、砾石、碎石和淡水在内的原生资源的重要消耗者。它的需求量巨大,每年消耗约16亿吨波特兰水泥和改性波特兰水泥。此外,在结构分析和设计方法中,应对具有异常非线性行为的极端条件需要繁琐的校准程序。这些方法在实践中也难以执行。为了减少时间和精力,机器学习可能是一个可行的选择。

材料与方法

设计了一组关键词,用于在PubMed搜索引擎中进行搜索,并设置过滤器以不搜索2015年以前的研究。此外,根据PRISMA指南选择研究,经过筛选,共总结了42项研究。PRISMA指南提供了一个结构化框架,以确保在报告系统评价和荟萃分析的方法和结果时的透明度、准确性和完整性。综述研究通常缺乏有条理地、准确地连接文献不同部分的能力。原始研究中一些最棘手的部分包括知识图谱、共被引和共现。利用这些数据,我们能够确定哪些地区在混凝土机器学习应用研究方面最为活跃,在产出和引用方面最有影响力的作者是谁,以及哪些文章总体引用次数最多。

结论

机器学习已成为各种结构工业应用中一种可行的预测方法,因此它可能成为混凝土结构设计中常规使用的经验模型的潜在继任者。非机器学习结构工程界可以利用对机器学习方法、基本原理、访问代码、机器学习库和收集的数据集的概述来构建自己的机器学习模型以供实际使用。结构工程从业者和研究人员可能会从本文对混凝土机器学习研究以及结构工程数据集的纳入中受益。建筑业有望从机器学习的使用中在成本节约、时间节约和劳动强度方面受益。这项工作中贡献作者和参与者的统计和图形表示可能会促进未来的合作以及研究人员和行业专业人员之间新颖想法和方法的分享。本系统评价的局限性在于它仅基于PubMed,这意味着它包括PubMed数据库中收录的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c945/11157546/d65da51ff12b/peerj-cs-10-1853-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验