Reddy I Neelakanta, Akkinepally Bhargav, Manjunath Venkatesu, Neelima Gaddam, Reddy Mogalahalli V, Shim Jaesool
School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea.
Department of Physics, Sri Padmavati Mahila Visvavidyalayam, Tirupati 517502, India.
Molecules. 2021 Nov 30;26(23):7262. doi: 10.3390/molecules26237262.
In this study, the facile synthesis of SnO quantum dot (QD)-garnished VO nanobelts exhibiting significantly enhanced reversible capacity and outstanding cyclic stability for Li storage was achieved. Electrochemical impedance analysis revealed strong charge transfer kinetics related to that of VO nanobelts. The SnO QD-garnished VO nanobelts exhibited the highest discharge capacity of ca. 760 mAhg at a density of 441 mAg between the voltage ranges of 0.0 to 3.0 V, while the pristine VO nanobelts samples recorded a discharge capacity of ca. 403 mAhg. The high capacity of QD-garnished nanobelts was achieved as an outcome of their huge surface area of 50.49 mg and improved electronic conductivity. Therefore, the as-presented SnO QD-garnished VO nanobelts synthesis strategy could produce an ideal material for application in high-performance Li-ion batteries.
在本研究中,实现了一种简便的合成方法,制备出了表面修饰有SnO量子点(QD)的VO纳米带,其对锂存储表现出显著增强的可逆容量和出色的循环稳定性。电化学阻抗分析表明,其电荷转移动力学与VO纳米带相关。在0.0至3.0 V的电压范围内,表面修饰有SnO QD的VO纳米带在441 mAg的电流密度下展现出约760 mAhg的最高放电容量,而原始VO纳米带样品的放电容量约为403 mAhg。表面修饰有量子点的纳米带具有50.49 mg的巨大表面积和改善的电子导电性,从而实现了高容量。因此,所提出的表面修饰有SnO QD的VO纳米带合成策略能够制备出一种适用于高性能锂离子电池的理想材料。