Suppr超能文献

一种用于定义可解释人工智能的心智模型方法。

A mental models approach for defining explainable artificial intelligence.

机构信息

School of Computer Science, University of Auckland, Symonds St, Auckland, New Zealand.

出版信息

BMC Med Inform Decis Mak. 2021 Dec 9;21(1):344. doi: 10.1186/s12911-021-01703-7.

Abstract

BACKGROUND

Wide-ranging concerns exist regarding the use of black-box modelling methods in sensitive contexts such as healthcare. Despite performance gains and hype, uptake of artificial intelligence (AI) is hindered by these concerns. Explainable AI is thought to help alleviate these concerns. However, existing definitions for explainable are not forming a solid foundation for this work.

METHODS

We critique recent reviews on the literature regarding: the agency of an AI within a team; mental models, especially as they apply to healthcare, and the practical aspects of their elicitation; and existing and current definitions of explainability, especially from the perspective of AI researchers. On the basis of this literature, we create a new definition of explainable, and supporting terms, providing definitions that can be objectively evaluated. Finally, we apply the new definition of explainable to three existing models, demonstrating how it can apply to previous research, and providing guidance for future research on the basis of this definition.

RESULTS

Existing definitions of explanation are premised on global applicability and don't address the question 'understandable by whom?'. Eliciting mental models can be likened to creating explainable AI if one considers the AI as a member of a team. On this basis, we define explainability in terms of the context of the model, comprising the purpose, audience, and language of the model and explanation. As examples, this definition is applied to regression models, neural nets, and human mental models in operating-room teams.

CONCLUSIONS

Existing definitions of explanation have limitations for ensuring that the concerns for practical applications are resolved. Defining explainability in terms of the context of their application forces evaluations to be aligned with the practical goals of the model. Further, it will allow researchers to explicitly distinguish between explanations for technical and lay audiences, allowing different evaluations to be applied to each.

摘要

背景

在医疗等敏感领域,人们广泛关注黑盒建模方法的使用。尽管人工智能(AI)取得了性能上的提升和炒作,但这些担忧阻碍了其采用。可解释 AI 被认为有助于缓解这些担忧。然而,现有的可解释性定义并没有为这项工作奠定坚实的基础。

方法

我们对最近关于文献的综述进行了评论,内容涉及:AI 在团队中的作用;心理模型,特别是它们在医疗保健中的应用,以及它们的启发式方法的实际方面;以及现有的和当前的可解释性定义,特别是从 AI 研究人员的角度。在此基础上,我们创建了一个新的可解释性定义和支持术语,提供了可客观评估的定义。最后,我们将新的可解释性定义应用于三个现有的模型,展示它如何适用于以前的研究,并根据这个定义为未来的研究提供指导。

结果

现有的解释定义是基于全局适用性的,没有解决“谁能理解?”的问题。如果将 AI 视为团队的一员,那么启发心理模型可以与创建可解释的 AI 相媲美。在此基础上,我们根据模型的上下文来定义可解释性,包括模型和解释的目的、受众和语言。例如,这个定义适用于回归模型、神经网络和手术室团队中的人类心理模型。

结论

现有的解释定义在确保解决实际应用的担忧方面存在局限性。根据其应用的上下文来定义可解释性,迫使评估与模型的实际目标保持一致。此外,它将允许研究人员明确区分技术和非技术受众的解释,允许对每个解释进行不同的评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b7b/8656102/33ff60f2aad4/12911_2021_1703_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验