Cardiology Section, Medical Service, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT 84148, United States.
Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, United States.
J Am Med Inform Assoc. 2024 Apr 3;31(4):919-928. doi: 10.1093/jamia/ocae017.
We conducted an implementation planning process during the pilot phase of a pragmatic trial, which tests an intervention guided by artificial intelligence (AI) analytics sourced from noninvasive monitoring data in heart failure patients (LINK-HF2).
A mixed-method analysis was conducted at 2 pilot sites. Interviews were conducted with 12 of 27 enrolled patients and with 13 participating clinicians. iPARIHS constructs were used for interview construction to identify workflow, communication patterns, and clinician's beliefs. Interviews were transcribed and analyzed using inductive coding protocols to identify key themes. Behavioral response data from the AI-generated notifications were collected.
Clinicians responded to notifications within 24 hours in 95% of instances, with 26.7% resulting in clinical action. Four implementation themes emerged: (1) High anticipatory expectations for reliable patient communications, reduced patient burden, and less proactive provider monitoring. (2) The AI notifications required a differential and tailored balance of trust and action advice related to role. (3) Clinic experience with other home-based programs influenced utilization. (4) Responding to notifications involved significant effort, including electronic health record (EHR) review, patient contact, and consultation with other clinicians.
Clinician's use of AI data is a function of beliefs regarding the trustworthiness and usefulness of the data, the degree of autonomy in professional roles, and the cognitive effort involved.
The implementation planning analysis guided development of strategies that addressed communication technology, patient education, and EHR integration to reduce clinician and patient burden in the subsequent main randomized phase of the trial. Our results provide important insights into the unique implications of implementing AI analytics into clinical workflow.
我们在一项实用试验的试点阶段进行了实施计划过程,该试验测试了一种基于人工智能(AI)分析的干预措施,该分析来自心力衰竭患者的非侵入性监测数据(LINK-HF2)。
在 2 个试点现场进行了混合方法分析。对 27 名入组患者中的 12 名和 13 名参与的临床医生进行了访谈。使用 iPARIHS 结构构建访谈,以确定工作流程、沟通模式和临床医生的信念。使用归纳编码方案对访谈进行转录和分析,以确定关键主题。收集来自 AI 生成通知的行为反应数据。
在 95%的情况下,临床医生在 24 小时内对通知做出了回应,其中 26.7%的通知导致了临床行动。出现了 4 个实施主题:(1)对可靠的患者沟通、减轻患者负担和减少主动提供者监测的高度预期。(2)AI 通知需要在信任和行动建议之间进行差异化和定制平衡,与角色相关。(3)诊所使用其他基于家庭的程序的经验影响了利用率。(4)回应通知涉及大量工作,包括电子健康记录(EHR)审查、患者联系和与其他临床医生协商。
临床医生对 AI 数据的使用是其对数据可信度和有用性、专业角色自主权程度以及涉及认知努力的信念的函数。
实施计划分析指导了策略的制定,这些策略解决了沟通技术、患者教育和 EHR 集成问题,以减少试验随后的主要随机阶段中临床医生和患者的负担。我们的研究结果提供了有关将 AI 分析纳入临床工作流程的独特影响的重要见解。