Suppr超能文献

人工智能预测分析在心力衰竭中的应用:一项实用随机临床试验的先导阶段结果。

Artificial intelligence predictive analytics in heart failure: results of the pilot phase of a pragmatic randomized clinical trial.

机构信息

Cardiology Section, Medical Service, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT 84148, United States.

Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, United States.

出版信息

J Am Med Inform Assoc. 2024 Apr 3;31(4):919-928. doi: 10.1093/jamia/ocae017.

Abstract

OBJECTIVES

We conducted an implementation planning process during the pilot phase of a pragmatic trial, which tests an intervention guided by artificial intelligence (AI) analytics sourced from noninvasive monitoring data in heart failure patients (LINK-HF2).

MATERIALS AND METHODS

A mixed-method analysis was conducted at 2 pilot sites. Interviews were conducted with 12 of 27 enrolled patients and with 13 participating clinicians. iPARIHS constructs were used for interview construction to identify workflow, communication patterns, and clinician's beliefs. Interviews were transcribed and analyzed using inductive coding protocols to identify key themes. Behavioral response data from the AI-generated notifications were collected.

RESULTS

Clinicians responded to notifications within 24 hours in 95% of instances, with 26.7% resulting in clinical action. Four implementation themes emerged: (1) High anticipatory expectations for reliable patient communications, reduced patient burden, and less proactive provider monitoring. (2) The AI notifications required a differential and tailored balance of trust and action advice related to role. (3) Clinic experience with other home-based programs influenced utilization. (4) Responding to notifications involved significant effort, including electronic health record (EHR) review, patient contact, and consultation with other clinicians.

DISCUSSION

Clinician's use of AI data is a function of beliefs regarding the trustworthiness and usefulness of the data, the degree of autonomy in professional roles, and the cognitive effort involved.

CONCLUSION

The implementation planning analysis guided development of strategies that addressed communication technology, patient education, and EHR integration to reduce clinician and patient burden in the subsequent main randomized phase of the trial. Our results provide important insights into the unique implications of implementing AI analytics into clinical workflow.

摘要

目的

我们在一项实用试验的试点阶段进行了实施计划过程,该试验测试了一种基于人工智能(AI)分析的干预措施,该分析来自心力衰竭患者的非侵入性监测数据(LINK-HF2)。

材料与方法

在 2 个试点现场进行了混合方法分析。对 27 名入组患者中的 12 名和 13 名参与的临床医生进行了访谈。使用 iPARIHS 结构构建访谈,以确定工作流程、沟通模式和临床医生的信念。使用归纳编码方案对访谈进行转录和分析,以确定关键主题。收集来自 AI 生成通知的行为反应数据。

结果

在 95%的情况下,临床医生在 24 小时内对通知做出了回应,其中 26.7%的通知导致了临床行动。出现了 4 个实施主题:(1)对可靠的患者沟通、减轻患者负担和减少主动提供者监测的高度预期。(2)AI 通知需要在信任和行动建议之间进行差异化和定制平衡,与角色相关。(3)诊所使用其他基于家庭的程序的经验影响了利用率。(4)回应通知涉及大量工作,包括电子健康记录(EHR)审查、患者联系和与其他临床医生协商。

讨论

临床医生对 AI 数据的使用是其对数据可信度和有用性、专业角色自主权程度以及涉及认知努力的信念的函数。

结论

实施计划分析指导了策略的制定,这些策略解决了沟通技术、患者教育和 EHR 集成问题,以减少试验随后的主要随机阶段中临床医生和患者的负担。我们的研究结果提供了有关将 AI 分析纳入临床工作流程的独特影响的重要见解。

相似文献

4
Shaping the future of chronic disease management: Insights into patient needs for AI-based homecare systems.
Int J Med Inform. 2024 Jan;181:105301. doi: 10.1016/j.ijmedinf.2023.105301. Epub 2023 Nov 20.
5
Principles for Real-World Implementation of Bedside Predictive Analytics Monitoring.
Appl Clin Inform. 2021 Aug;12(4):888-896. doi: 10.1055/s-0041-1735183. Epub 2021 Sep 22.
7
Development and Validation of an Artificial Intelligence System to Optimize Clinician Review of Patient Records.
JAMA Netw Open. 2021 Jul 1;4(7):e2117391. doi: 10.1001/jamanetworkopen.2021.17391.
8
Artificial Intelligence-Generated Draft Replies to Patient Inbox Messages.
JAMA Netw Open. 2024 Mar 4;7(3):e243201. doi: 10.1001/jamanetworkopen.2024.3201.
9
Artificial intelligence (AI) and machine learning (ML) based decision support systems in mental health: An integrative review.
Int J Ment Health Nurs. 2023 Aug;32(4):966-978. doi: 10.1111/inm.13114. Epub 2023 Feb 6.

本文引用的文献

2
Clinical use of artificial intelligence requires AI-capable organizations.
JAMIA Open. 2023 May 3;6(2):ooad028. doi: 10.1093/jamiaopen/ooad028. eCollection 2023 Jul.
3
Increasing acceptance of medical AI: The role of medical staff participation in AI development.
Int J Med Inform. 2023 Jul;175:105073. doi: 10.1016/j.ijmedinf.2023.105073. Epub 2023 Apr 25.
5
Accelerating the impact of artificial intelligence in mental healthcare through implementation science.
Implement Res Pract. 2022 Jul 11;3:26334895221112033. doi: 10.1177/26334895221112033. eCollection 2022 Jan-Dec.
8
A manifesto on explainability for artificial intelligence in medicine.
Artif Intell Med. 2022 Nov;133:102423. doi: 10.1016/j.artmed.2022.102423. Epub 2022 Oct 9.
10
Explanatory pragmatism: a context-sensitive framework for explainable medical AI.
Ethics Inf Technol. 2022;24(1):13. doi: 10.1007/s10676-022-09632-3. Epub 2022 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验