Wellnhofer Ernst
Institute of Computer-Assisted Cardiovascular Medicine, Charité University Medicine Berlin, Berlin, Germany.
Front Cardiovasc Med. 2022 Jul 22;9:890809. doi: 10.3389/fcvm.2022.890809. eCollection 2022.
Recent progress in digital health data recording, advances in computing power, and methodological approaches that extract information from data as artificial intelligence are expected to have a disruptive impact on technology in medicine. One of the potential benefits is the ability to extract new and essential insights from the vast amount of data generated during health care delivery every day. Cardiovascular imaging is boosted by new intelligent automatic methods to manage, process, segment, and analyze petabytes of image data exceeding historical manual capacities. Algorithms that learn from data raise new challenges for regulatory bodies. Partially autonomous behavior and adaptive modifications and a lack of transparency in deriving evidence from complex data pose considerable problems. Controlling new technologies requires new controlling techniques and ongoing regulatory research. All stakeholders must participate in the quest to find a fair balance between innovation and regulation. The regulatory approach to artificial intelligence must be risk-based and resilient. A focus on unknown emerging risks demands continuous surveillance and clinical evaluation during the total product life cycle. Since learning algorithms are data-driven, high-quality data is fundamental for good machine learning practice. Mining, processing, validation, governance, and data control must account for bias, error, inappropriate use, drifts, and shifts, particularly in real-world data. Regulators worldwide are tackling twenty-first century challenges raised by "learning" medical devices. Ethical concerns and regulatory approaches are presented. The paper concludes with a discussion on the future of responsible artificial intelligence.
数字健康数据记录的最新进展、计算能力的提升以及作为人工智能从数据中提取信息的方法,预计将对医学技术产生颠覆性影响。潜在益处之一是能够从每天医疗服务过程中产生的大量数据中提取新的重要见解。新的智能自动方法推动了心血管成像技术的发展,这些方法能够管理、处理、分割和分析超过历史人工处理能力的PB级图像数据。从数据中学习的算法给监管机构带来了新的挑战。部分自主行为、自适应修改以及从复杂数据中获取证据缺乏透明度,这些都带来了相当大的问题。控制新技术需要新的控制技术和持续的监管研究。所有利益相关者都必须参与到在创新与监管之间找到公平平衡的探索中。对人工智能的监管方法必须基于风险且具有弹性。关注未知的新兴风险需要在产品整个生命周期内进行持续监测和临床评估。由于学习算法是数据驱动的,高质量数据是良好机器学习实践的基础。挖掘、处理、验证、治理和数据控制必须考虑偏差、错误、不当使用、数据漂移和变化,尤其是在现实世界的数据中。全球监管机构正在应对“学习型”医疗设备带来的21世纪挑战。文中还介绍了伦理问题和监管方法。本文最后讨论了负责任的人工智能的未来。
Front Cardiovasc Med. 2022-7-22
Early Hum Dev. 2020-11
Front Pharmacol. 2020-6-18
J Med Internet Res. 2021-10-26
Discoveries (Craiova). 2025-6-30
Healthcare (Basel). 2025-7-8
NPJ Digit Med. 2025-7-10
J Med Imaging (Bellingham). 2025-11
EJVES Vasc Forum. 2023-9-2
JAMA Health Forum. 2022-2-4
Nature. 2022-4
Philos Technol. 2021
Front Cardiovasc Med. 2021-12-8
BMC Med Inform Decis Mak. 2021-12-9
J Med Syst. 2021-11-2
Lancet Digit Health. 2021-11
J Med Internet Res. 2021-10-26
Eur Heart J Qual Care Clin Outcomes. 2022-5-5