Suppr超能文献

比较宏基因组学鉴定与人工关节感染相关的病原体。

Comparative meta-omics for identifying pathogens associated with prosthetic joint infection.

机构信息

Rothman Institute, Philadelphia, PA, USA.

Contamination Source Identification LLC, Huntingdon, PA, USA.

出版信息

Sci Rep. 2021 Dec 9;11(1):23749. doi: 10.1038/s41598-021-02505-7.

Abstract

Prosthetic joint infections (PJI) are economically and personally costly, and their incidence has been increasing in the United States. Herein, we compared 16S rRNA amplicon sequencing (16S), shotgun metagenomics (MG) and metatranscriptomics (MT) in identifying pathogens causing PJI. Samples were collected from 30 patients, including 10 patients undergoing revision arthroplasty for infection, 10 patients receiving revision for aseptic failure, and 10 patients undergoing primary total joint arthroplasty. Synovial fluid and peripheral blood samples from the patients were obtained at time of surgery. Analysis revealed distinct microbial communities between primary, aseptic, and infected samples using MG, MT, (PERMANOVA p = 0.001), and 16S sequencing (PERMANOVA p < 0.01). MG and MT had higher concordance with culture (83%) compared to 0% concordance of 16S results. Supervised learning methods revealed MT datasets most clearly differentiated infected, primary, and aseptic sample groups. MT data also revealed more antibiotic resistance genes, with improved concordance results compared to MG. These data suggest that a differential and underlying microbial ecology exists within uninfected and infected joints. This study represents the first application of RNA-based sequencing (MT). Further work on larger cohorts will provide opportunities to employ deep learning approaches to improve accuracy, predictive power, and clinical utility.

摘要

人工关节感染(PJI)在经济和个人方面都代价高昂,其在美国的发病率一直在上升。在此,我们比较了 16S rRNA 扩增子测序(16S)、鸟枪法宏基因组学(MG)和宏转录组学(MT)在鉴定引起 PJI 的病原体方面的应用。从 30 名患者中采集了样本,包括 10 名因感染而行翻修关节成形术的患者、10 名因无菌性失败而行翻修的患者和 10 名接受初次全关节置换术的患者。患者在手术时采集了滑膜液和外周血样本。使用 MG、MT 和 16S 测序(PERMANOVA p < 0.01)分析表明,原发性、无菌性和感染性样本之间存在明显不同的微生物群落。与 16S 结果的 0%一致性相比,MG 和 MT 与培养物的一致性更高(83%)。有监督的学习方法表明,MT 数据集最能区分感染、原发性和无菌性样本组。MT 数据还揭示了更多的抗生素耐药基因,与 MG 相比,其一致性结果有所改善。这些数据表明,未感染和感染关节内存在不同的潜在微生物生态学。本研究代表了基于 RNA 的测序(MT)的首次应用。在更大的队列中开展进一步工作将提供机会采用深度学习方法来提高准确性、预测能力和临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf6b/8660779/3af3edd5c32e/41598_2021_2505_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验