Suppr超能文献

评估卷积神经网络作为脑电图-肌电图融合方法的性能

Evaluating Convolutional Neural Networks as a Method of EEG-EMG Fusion.

作者信息

Tryon Jacob, Trejos Ana Luisa

机构信息

School of Biomedical Engineering, Western University, London, ON, Canada.

Department of Electrical and Computer Engineering, Western University, London, ON, Canada.

出版信息

Front Neurorobot. 2021 Nov 23;15:692183. doi: 10.3389/fnbot.2021.692183. eCollection 2021.

Abstract

Wearable robotic exoskeletons have emerged as an exciting new treatment tool for disorders affecting mobility; however, the human-machine interface, used by the patient for device control, requires further improvement before robotic assistance and rehabilitation can be widely adopted. One method, made possible through advancements in machine learning technology, is the use of bioelectrical signals, such as electroencephalography (EEG) and electromyography (EMG), to classify the user's actions and intentions. While classification using these signals has been demonstrated for many relevant control tasks, such as motion intention detection and gesture recognition, challenges in decoding the bioelectrical signals have caused researchers to seek methods for improving the accuracy of these models. One such method is the use of EEG-EMG fusion, creating a classification model that decodes information from both EEG and EMG signals simultaneously to increase the amount of available information. So far, EEG-EMG fusion has been implemented using traditional machine learning methods that rely on manual feature extraction; however, new machine learning methods have emerged that can automatically extract relevant information from a dataset, which may prove beneficial during EEG-EMG fusion. In this study, Convolutional Neural Network (CNN) models were developed using combined EEG-EMG inputs to determine if they have potential as a method of EEG-EMG fusion that automatically extracts relevant information from both signals simultaneously. EEG and EMG signals were recorded during elbow flexion-extension and used to develop CNN models based on time-frequency (spectrogram) and time (filtered signal) domain image inputs. The results show a mean accuracy of 80.51 ± 8.07% for a three-class output (33.33% chance level), with an F-score of 80.74%, using time-frequency domain-based models. This work demonstrates the viability of CNNs as a new method of EEG-EMG fusion and evaluates different signal representations to determine the best implementation of a combined EEG-EMG CNN. It leverages modern machine learning methods to advance EEG-EMG fusion, which will ultimately lead to improvements in the usability of wearable robotic exoskeletons.

摘要

可穿戴机器人外骨骼已成为一种用于治疗影响行动能力疾病的令人兴奋的新治疗工具;然而,患者用于控制设备的人机界面在机器人辅助和康复能够被广泛采用之前还需要进一步改进。通过机器学习技术的进步而成为可能的一种方法是利用生物电信号,如脑电图(EEG)和肌电图(EMG),来对用户的动作和意图进行分类。虽然使用这些信号进行分类已在许多相关控制任务中得到证明,如运动意图检测和手势识别,但解码生物电信号的挑战促使研究人员寻求提高这些模型准确性的方法。一种这样的方法是使用EEG-EMG融合,创建一个分类模型,该模型同时解码来自EEG和EMG信号的信息,以增加可用信息量。到目前为止,EEG-EMG融合已使用依赖手动特征提取的传统机器学习方法来实现;然而,新的机器学习方法已经出现,它们可以自动从数据集中提取相关信息,这在EEG-EMG融合过程中可能会被证明是有益的。在本研究中,使用组合的EEG-EMG输入开发了卷积神经网络(CNN)模型,以确定它们作为一种EEG-EMG融合方法的潜力,该方法能同时自动从两个信号中提取相关信息。在肘部屈伸过程中记录EEG和EMG信号,并用于基于时频(频谱图)和时域(滤波信号)图像输入开发CNN模型。结果表明,使用基于时频域的模型,对于三类输出(机会水平为33.33%),平均准确率为80.51±8.07%,F分数为80.74%。这项工作证明了CNN作为EEG-EMG融合新方法的可行性,并评估了不同的信号表示方式,以确定组合EEG-EMG CNN的最佳实现方式。它利用现代机器学习方法推进EEG-EMG融合,这最终将导致可穿戴机器人外骨骼可用性的提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0497/8649783/69523a7994ca/fnbot-15-692183-g0001.jpg

相似文献

1
Evaluating Convolutional Neural Networks as a Method of EEG-EMG Fusion.
Front Neurorobot. 2021 Nov 23;15:692183. doi: 10.3389/fnbot.2021.692183. eCollection 2021.
2
ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data.
Comput Biol Med. 2024 Jan;168:107649. doi: 10.1016/j.compbiomed.2023.107649. Epub 2023 Nov 2.
5
Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms.
Comput Methods Programs Biomed. 2020 Dec;197:105721. doi: 10.1016/j.cmpb.2020.105721. Epub 2020 Aug 25.
6
Performance Evaluation of EEG/EMG Fusion Methods for Motion Classification.
IEEE Int Conf Rehabil Robot. 2019 Jun;2019:971-976. doi: 10.1109/ICORR.2019.8779465.
8
Sensor Fusion for Myoelectric Control Based on Deep Learning With Recurrent Convolutional Neural Networks.
Artif Organs. 2018 Sep;42(9):E272-E282. doi: 10.1111/aor.13153. Epub 2018 Jul 13.
9
Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG.
Comput Methods Programs Biomed. 2020 Jan;183:105089. doi: 10.1016/j.cmpb.2019.105089. Epub 2019 Sep 27.
10
CNN-XGBoost fusion-based affective state recognition using EEG spectrogram image analysis.
Sci Rep. 2022 Aug 19;12(1):14122. doi: 10.1038/s41598-022-18257-x.

引用本文的文献

本文引用的文献

1
Hybrid Human-Machine Interface for Gait Decoding Through Bayesian Fusion of EEG and EMG Classifiers.
Front Neurorobot. 2020 Nov 17;14:582728. doi: 10.3389/fnbot.2020.582728. eCollection 2020.
2
MetaSleepLearner: A Pilot Study on Fast Adaptation of Bio-Signals-Based Sleep Stage Classifier to New Individual Subject Using Meta-Learning.
IEEE J Biomed Health Inform. 2021 Jun;25(6):1949-1963. doi: 10.1109/JBHI.2020.3037693. Epub 2021 Jun 3.
3
Rehabilitative and assistive wearable mechatronic upper-limb devices: A review.
J Rehabil Assist Technol Eng. 2020 May 13;7:2055668320917870. doi: 10.1177/2055668320917870. eCollection 2020 Jan-Dec.
4
Performance Evaluation of EEG/EMG Fusion Methods for Motion Classification.
IEEE Int Conf Rehabil Robot. 2019 Jun;2019:971-976. doi: 10.1109/ICORR.2019.8779465.
5
A novel hybrid deep learning scheme for four-class motor imagery classification.
J Neural Eng. 2019 Oct 16;16(6):066004. doi: 10.1088/1741-2552/ab3471.
6
Deep learning-based electroencephalography analysis: a systematic review.
J Neural Eng. 2019 Aug 14;16(5):051001. doi: 10.1088/1741-2552/ab260c.
7
A Channel-Projection Mixed-Scale Convolutional Neural Network for Motor Imagery EEG Decoding.
IEEE Trans Neural Syst Rehabil Eng. 2019 Jun;27(6):1170-1180. doi: 10.1109/TNSRE.2019.2915621. Epub 2019 May 8.
8
Learning joint space-time-frequency features for EEG decoding on small labeled data.
Neural Netw. 2019 Jun;114:67-77. doi: 10.1016/j.neunet.2019.02.009. Epub 2019 Mar 11.
9
Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer Learning.
IEEE Trans Neural Syst Rehabil Eng. 2019 Apr;27(4):760-771. doi: 10.1109/TNSRE.2019.2896269. Epub 2019 Jan 31.
10
EEG Classification of Motor Imagery Using a Novel Deep Learning Framework.
Sensors (Basel). 2019 Jan 29;19(3):551. doi: 10.3390/s19030551.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验