Suppr超能文献

少层并五苯薄膜中的低能电子辐照损伤

Low-Energy Electron Irradiation Damage in Few-Monolayer Pentacene Films.

作者信息

Tebyani A, Baalbergen F B, Tromp R M, van der Molen S J

机构信息

Huygens-Kamerlingh Onnes Laboratorium, Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, P.O. Box 9504, NL-2300 RA Leiden, The Netherlands.

IBM T. J. Watson Research Center, 1101 Kitchawan Road, P.O. Box 218, Yorktown Heights, New York, New York 10598, United States.

出版信息

J Phys Chem C Nanomater Interfaces. 2021 Dec 2;125(47):26150-26156. doi: 10.1021/acs.jpcc.1c06749. Epub 2021 Nov 18.

Abstract

Crystalline films of pentacene molecules, two to four monolayers in thickness, are grown via in situ sublimation on silicon substrates in the ultrahigh vacuum chamber of a low-energy electron microscope. It is observed that the diffraction pattern of the pentacene layers fades upon irradiation with low-energy electrons. The damage cross section is found to increase by more than an order of magnitude for electron energies from 0 to 10 eV and by another order of magnitude from 10 to 40 eV. Close to 0 eV, damage is virtually nil. Creation of chemically reactive atomic centers after electron attachment or impact ionization is thought to trigger chemical reactions between neighboring molecules that gradually transform the layer into a disordered carbon nanomembrane. Additionally, diminishing spectroscopic features related to the unoccupied band structure of the layers, accompanied by loss of definition in real-space images, and an increase in the background intensity of diffraction images during irradiation point to chemical changes and formation of a disordered layer.

摘要

通过在低能电子显微镜的超高真空腔室中在硅衬底上原位升华生长出厚度为两到四个单分子层的并五苯分子晶体薄膜。观察到,用低能电子辐照时,并五苯层的衍射图案会逐渐消失。发现对于能量从0到10电子伏特的电子,损伤截面增加超过一个数量级,而从10到40电子伏特又增加一个数量级。接近0电子伏特时,损伤几乎为零。电子附着或碰撞电离后产生的化学反应性原子中心被认为会引发相邻分子之间的化学反应,从而逐渐将该层转变为无序的碳纳米膜。此外,与该层未占据能带结构相关的光谱特征逐渐减弱,同时实空间图像的清晰度下降,以及辐照期间衍射图像的背景强度增加,这些都表明发生了化学变化并形成了无序层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d394/8647077/394cb8dfd975/jp1c06749_0004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验