Huygens-Kamerlingh Onnes Laboratorium, Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, P.O. Box 9504, NL-2300 RA Leiden, The Netherlands.
Department of Physics, Columbia University, New York, New York 10027, USA.
Nat Commun. 2016 Nov 29;7:13621. doi: 10.1038/ncomms13621.
High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the 'chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.
高电子迁移率是石墨烯的关键特性之一,这一特性被广泛应用于基础研究和实际应用。在石墨烯和六方氮化硼的异质结构中可以发现最高的迁移率值,因此它们被广泛使用。然而,令人惊讶的是,人们对这些层状系统的电子态之间的相互作用知之甚少。实际上,人们普遍认为这些电子态之间不会发生显著的耦合。在这里,我们使用角分辨反射电子能谱研究了石墨、氮化硼及其异质结构的非占据能带结构。我们证明,尽管石墨烯和氮化硼的能带色散非常相似,但在很宽的能量范围内它们并不相互作用。我们使用的方法可以广泛应用于研究范德华体系中的相互作用,即通过组成它们的层之间的电子耦合来构建人工层状材料堆叠。通过这种方法,我们可以通过电子耦合在层间形成的“层的化学”来定量理解新型材料的形成。