Fachbereich Physik , Philipps-Universität Marburg , 35032 Marburg , Germany.
ACS Appl Mater Interfaces. 2019 Sep 25;11(38):35177-35184. doi: 10.1021/acsami.9b09369. Epub 2019 Sep 10.
Controlling the crystallinity of organic thin films is an important aspect in the improvement of organic electronic devices. However, because of high molecular mass, structural anisotropy, and weak intermolecular van der Waals bonding, crystalline ordering is not easily accomplished. While film preparation at elevated substrate temperature often improves the crystalline quality, this approach cannot be applied to temperature-sensitive materials such as plastic foils used as substrates for flexible electronics. Here, we examine in detail a low-temperature approach to improve film crystallinity by using ultrathin pentacene (PEN) buffer layers that allow crystalline growth of buckminsterfullerene (C) thin films while without such buffer layers, only amorphous fullerene films are formed upon room-temperature deposition on various support substrates. Remarkably, this effect depends critically on the thickness of the PEN buffer and requires a thickness of at least two monolayers to induce crystalline growth, whereas a buffer layer consisting of a monolayer of PEN again yields amorphous C films. Combining crystallographic investigations by X-ray diffraction and atomic force microscopy measurements, we determine distinct nucleation sites on buffer layers of different thickness, which are correlated to the amorphous, respectively crystalline C islands. Our microscopic analysis reveals distinct differences for the nucleation and diffusivity of fullerenes on the PEN monolayer and on thicker buffer layers, which are attributed to the molecular arrangement in the PEN monolayer. Finally, we show that the crystalline C films are exclusively (111)-oriented and the fullerene islands are even heteroepitaxially aligned on the PEN buffer.
控制有机薄膜的结晶度是改善有机电子器件的一个重要方面。然而,由于高分子质量、结构各向异性和较弱的分子间范德华键,结晶有序性不易实现。虽然在升高的衬底温度下进行薄膜制备通常可以提高结晶质量,但这种方法不能应用于对温度敏感的材料,例如用作柔性电子学衬底的塑料箔。在这里,我们详细研究了一种通过使用超薄五苯(PEN)缓冲层来改善薄膜结晶度的低温方法,该方法允许富勒烯(C)薄膜在低温下进行晶体生长,而在没有这种缓冲层的情况下,在各种支撑衬底上室温沉积只会形成非晶富勒烯薄膜。值得注意的是,这种效果取决于 PEN 缓冲层的厚度,需要至少两个单原子层的厚度才能诱导晶体生长,而由单层 PEN 组成的缓冲层再次导致无定形 C 薄膜的形成。通过 X 射线衍射和原子力显微镜测量的晶体学研究相结合,我们确定了不同厚度的缓冲层上的不同成核点,这些成核点与无定形和结晶 C 岛相对应。我们的微观分析揭示了在 PEN 单层和较厚的缓冲层上富勒烯成核和扩散的明显差异,这归因于 PEN 单层中的分子排列。最后,我们表明,结晶 C 薄膜完全是(111)取向的,并且富勒烯岛甚至在 PEN 缓冲层上异质外延对齐。