Suppr超能文献

蒙古沙鼠家族特定发声用法的无监督发现。

Unsupervised discovery of family specific vocal usage in the Mongolian gerbil.

作者信息

Peterson Ralph E, Choudhri Aman, Mitelut Catalin, Tanelus Aramis, Capo-Battaglia Athena, Williams Alex H, Schneider David M, Sanes Dan H

机构信息

Center for Neural Science, New York University, New York, NY.

Center for Computational Neuroscience, Flatiron Institute, New York, NY.

出版信息

bioRxiv. 2024 Sep 4:2023.03.11.532197. doi: 10.1101/2023.03.11.532197.

Abstract

In nature, animal vocalizations can provide crucial information about identity, including kinship and hierarchy. However, lab-based vocal behavior is typically studied during brief interactions between animals with no prior social relationship, and under environmental conditions with limited ethological relevance. Here, we address this gap by establishing long-term acoustic recordings from Mongolian gerbil families, a core social group that uses an array of sonic and ultrasonic vocalizations. Three separate gerbil families were transferred to an enlarged environment and continuous 20-day audio recordings were obtained. Using a variational autoencoder (VAE) to quantify 583,237 vocalizations, we show that gerbils exhibit a more elaborate vocal repertoire than has been previously reported and that vocal repertoire usage differs significantly by family. By performing gaussian mixture model clustering on the VAE latent space, we show that families preferentially use characteristic sets of vocal clusters and that these usage preferences remain stable over weeks. Furthermore, gerbils displayed family-specific transitions between vocal clusters. Since gerbils live naturally as extended families in complex underground burrows that are adjacent to other families, these results suggest the presence of a vocal dialect which could be exploited by animals to represent kinship. These findings position the Mongolian gerbil as a compelling animal model to study the neural basis of vocal communication and demonstrates the potential for using unsupervised machine learning with uninterrupted acoustic recordings to gain insights into naturalistic animal behavior.

摘要

在自然界中,动物的发声可以提供有关身份的关键信息,包括亲属关系和等级制度。然而,基于实验室的发声行为通常是在没有先前社会关系的动物之间的短暂互动中进行研究的,并且是在与行为学相关性有限的环境条件下进行的。在这里,我们通过对蒙古沙鼠家庭进行长期声学记录来填补这一空白,蒙古沙鼠家庭是一个核心社会群体,它们使用一系列声音和超声波发声。将三个独立的沙鼠家庭转移到一个扩大的环境中,并获得了连续20天的音频记录。使用变分自编码器(VAE)对583,237次发声进行量化,我们发现沙鼠表现出比以前报道的更为复杂的发声 repertoire,并且发声 repertoire 的使用在不同家庭之间存在显著差异。通过在VAE潜在空间上进行高斯混合模型聚类,我们表明家庭优先使用特定的发声集群集,并且这些使用偏好会在数周内保持稳定。此外,沙鼠在发声集群之间表现出特定于家庭的转换。由于沙鼠自然地以大家庭的形式生活在与其他家庭相邻的复杂地下洞穴中,这些结果表明存在一种发声方言,动物可以利用它来表示亲属关系。这些发现将蒙古沙鼠定位为研究发声交流神经基础的有吸引力的动物模型,并展示了使用无监督机器学习和不间断声学记录来深入了解自然动物行为的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9e/11398318/38b2179d8533/nihpp-2023.03.11.532197v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验