Murayama Kazuaki, Kawano Shuichi
IEEE Trans Neural Netw Learn Syst. 2023 Sep;34(9):5856-5868. doi: 10.1109/TNNLS.2021.3131357. Epub 2023 Sep 1.
This article considers the regression problem with sparse Bayesian learning (SBL) when the number of weights P is larger than the data size N , i.e., P >> N . The situation induces overfitting and makes regression tasks, such as prediction and basis selection, challenging. We show a strategy to address this problem. Our strategy consists of two steps. The first is to apply an inverse gamma hyperprior with a shape parameter close to zero over the noise precision of automatic relevance determination (ARD) prior. This hyperprior is associated with the concept of a weakly informative prior in terms of enhancing sparsity. The model sparsity can be controlled by adjusting a scale parameter of inverse gamma hyperprior, leading to the prevention of overfitting. The second is to select an optimal scale parameter. We develop an extended predictive information criterion (EPIC) for optimal selection. We investigate the strategy through relevance vector machine (RVM) with a multiple-kernel scheme dealing with highly nonlinear data, including smooth and less smooth regions. This setting is one form of the regression task with SBL in the P >> N situation. As an empirical evaluation, regression analyses on four artificial datasets and eight real datasets are performed. We see that the overfitting is prevented, while predictive performance may be not drastically superior to comparative methods. Our methods allow us to select a small number of nonzero weights while keeping the model sparse. Thus, the methods are expected to be useful for basis and variable selection.
本文考虑当权重数量(P)大于数据规模(N),即(P\gg N)时,采用稀疏贝叶斯学习(SBL)的回归问题。这种情况会导致过拟合,使诸如预测和基选择等回归任务具有挑战性。我们展示了一种解决此问题的策略。我们的策略包括两个步骤。第一步是在自动相关性确定(ARD)先验的噪声精度上应用形状参数接近零的逆伽马超先验。就增强稀疏性而言,这种超先验与弱信息先验的概念相关联。模型稀疏性可通过调整逆伽马超先验的尺度参数来控制,从而防止过拟合。第二步是选择最优尺度参数。我们开发了一种扩展预测信息准则(EPIC)用于最优选择。我们通过具有多内核方案的相关向量机(RVM)来研究该策略,该方案用于处理高度非线性数据,包括平滑区域和不太平滑的区域。这种设置是(P\gg N)情况下SBL回归任务的一种形式。作为实证评估,我们对四个人造数据集和八个真实数据集进行了回归分析。我们发现过拟合得到了防止,而预测性能可能并不比比较方法有显著优势。我们的方法允许我们在保持模型稀疏的同时选择少量非零权重。因此,预计这些方法对于基选择和变量选择是有用的。