Kim Hae-Young, Williamson John M, Lin Hung-Mo
Department of Epidemiology and Community Health, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, U.S.A.
Division of Parasitic Diseases and Malaria, National Center of Global Health, Centers for Disease Control and Prevention (MS A-06), 1600 Clifton Road, Atlanta, GA 30329, U.S.A.
Stat Med. 2016 Apr 15;35(8):1390-400. doi: 10.1002/sim.6832. Epub 2015 Dec 7.
We propose a method for calculating power and sample size for studies involving interval-censored failure time data that only involves standard software required for fitting the appropriate parametric survival model. We use the framework of a longitudinal study where patients are assessed periodically for a response and the only resultant information available to the investigators is the failure window: the time between the last negative and first positive test results. The survival model is fit to an expanded data set using easily computed weights. We illustrate with a Weibull survival model and a two-group comparison. The investigator can specify a group difference in terms of a hazards ratio. Our simulation results demonstrate the merits of these proposed power calculations. We also explore how the number of assessments (visits), and thus the corresponding lengths of the failure intervals, affect study power. The proposed method can be easily extended to more complex study designs and a variety of survival and censoring distributions.
我们提出了一种用于计算涉及区间删失失效时间数据研究的检验效能和样本量的方法,该方法仅需要拟合适当参数生存模型所需的标准软件。我们使用纵向研究的框架,在此框架下定期评估患者的反应,而研究人员可获得的唯一结果信息是失效窗口:即最后一次阴性检测结果与首次阳性检测结果之间的时间。使用易于计算的权重将生存模型拟合到一个扩展数据集。我们以威布尔生存模型和两组比较为例进行说明。研究人员可以根据风险比指定组间差异。我们的模拟结果证明了这些提出的检验效能计算方法的优点。我们还探讨了评估次数(访视)以及相应的失效间隔长度如何影响研究效能。所提出的方法可以很容易地扩展到更复杂的研究设计以及各种生存和删失分布。