School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
J Biol Chem. 2022 Jan;298(1):101476. doi: 10.1016/j.jbc.2021.101476. Epub 2021 Dec 8.
The CO-fixing enzyme rubisco is responsible for almost all carbon fixation. This process frequently requires rubisco activase (Rca) machinery, which couples ATP hydrolysis to the removal of inhibitory sugar phosphates, including the rubisco substrate ribulose 1,5-bisphosphate (RuBP). Rubisco is sometimes compartmentalized in carboxysomes, bacterial microcompartments that enable a carbon dioxide concentrating mechanism (CCM). Characterized carboxysomal rubiscos, however, are not prone to inhibition, and often no activase machinery is associated with these enzymes. Here, we characterize two carboxysomal rubiscos of the form IA clade that are associated with CbbQO-type Rcas. These enzymes release RuBP at a much lower rate than the canonical carboxysomal rubisco from Synechococcus PCC6301. We found that CbbQO-type Rcas encoded in carboxysome gene clusters can remove RuBP and the tight-binding transition state analog carboxy-arabinitol 1,5-bisphosphate from cognate rubiscos. The Acidithiobacillus ferrooxidans genome encodes two form IA rubiscos associated with two sets of cbbQ and cbbO genes. We show that the two CbbQO activase systems display specificity for the rubisco enzyme encoded in the same gene cluster, and this property can be switched by substituting the C-terminal three residues of the large subunit. Our findings indicate that the kinetic and inhibitory properties of proteobacterial form IA rubiscos are diverse and predict that Rcas may be necessary for some α-carboxysomal CCMs. These findings will have implications for efforts aiming to introduce biophysical CCMs into plants and other hosts for improvement of carbon fixation of crops.
固碳酶 Rubisco 几乎负责所有的碳固定。这一过程经常需要 Rubisco 激活酶(Rca)机制,该机制将 ATP 水解与抑制性糖磷酸的去除偶联起来,包括 Rubisco 底物 1,5-二磷酸核酮糖(RuBP)。Rubisco 有时被分隔在羧基体中,细菌微区室使二氧化碳浓缩机制(CCM)成为可能。然而,已鉴定的羧基体 Rubisco 不易受到抑制,并且通常与这些酶相关的没有激活酶机制。在这里,我们研究了与 CbbQO 型 Rcas 相关的两个 IA 型 clade 的羧基体 Rubisco。这些酶释放 RuBP 的速度比来自 Synechococcus PCC6301 的典型羧基体 Rubisco 慢得多。我们发现,羧基体基因簇中编码的 CbbQO 型 Rcas 可以从同源 Rubisco 中去除 RuBP 和紧密结合的过渡态类似物羧基阿拉伯糖醇 1,5-双磷酸。嗜酸氧化亚铁硫杆菌基因组编码两个与两套 cbbQ 和 cbbO 基因相关的 IA 型 Rubisco。我们表明,两种 CbbQO 激活酶系统对同一基因簇中编码的 Rubisco 酶具有特异性,并且这种特性可以通过替换大亚基的 C 末端三个残基来切换。我们的研究结果表明,变形杆菌 IA 型 Rubisco 的动力学和抑制特性是多样的,并预测 Rcas 可能是某些α羧基体 CCM 的必要条件。这些发现将对旨在将生物物理 CCM 引入植物和其他宿主以提高作物碳固定效率的努力产生影响。