Suppr超能文献

红藻中异源寡聚体红色型核酮糖-1,5-二磷酸羧化酶/加氧酶激活酶的特性分析

Characterization of the heterooligomeric red-type rubisco activase from red algae.

作者信息

Loganathan Nitin, Tsai Yi-Chin Candace, Mueller-Cajar Oliver

机构信息

School of Biological Sciences, Nanyang Technological University, Singapore 637551.

School of Biological Sciences, Nanyang Technological University, Singapore 637551

出版信息

Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14019-14024. doi: 10.1073/pnas.1610758113. Epub 2016 Nov 21.

Abstract

The photosynthetic CO-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) is inhibited by nonproductive binding of its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. Reactivation requires ATP-hydrolysis-powered remodeling of the inhibited complexes by diverse molecular chaperones known as rubisco activases (Rcas). Eukaryotic phytoplankton of the red plastid lineage contain so-called red-type rubiscos, some of which have been shown to possess superior kinetic properties to green-type rubiscos found in higher plants. These organisms are known to encode multiple homologs of CbbX, the α-proteobacterial red-type activase. Here we show that the gene products of two cbbX genes encoded by the nuclear and plastid genomes of the red algae Cyanidioschyzon merolae are nonfunctional in isolation, but together form a thermostable heterooligomeric Rca that can use both α-proteobacterial and red algal-inhibited rubisco complexes as a substrate. The mechanism of rubisco activation appears conserved between the bacterial and the algal systems and involves threading of the rubisco large subunit C terminus. Whereas binding of the allosteric regulator RuBP induces oligomeric transitions to the bacterial activase, it merely enhances the kinetics of ATP hydrolysis in the algal enzyme. Mutational analysis of nuclear and plastid isoforms demonstrates strong coordination between the subunits and implicates the nuclear-encoded subunit as being functionally dominant. The plastid-encoded subunit may be catalytically inert. Efforts to enhance crop photosynthesis by transplanting red algal rubiscos with enhanced kinetics will need to take into account the requirement for a compatible Rca.

摘要

光合二氧化碳固定酶核酮糖-1,5-二磷酸羧化酶/加氧酶(rubisco)会被其底物核酮糖-1,5-二磷酸(RuBP)和其他糖磷酸的无效结合所抑制。重新激活需要由多种被称为rubisco活化酶(Rcas)的分子伴侣通过ATP水解驱动对受抑制的复合物进行重塑。红色质体谱系的真核浮游植物含有所谓的红色型rubiscos,其中一些已被证明具有比高等植物中发现的绿色型rubiscos更优越的动力学特性。已知这些生物编码CbbX的多个同源物,即α-变形菌红色型活化酶。在这里,我们表明,红藻梅氏嗜热栖热菌的核基因组和质体基因组编码的两个cbbX基因的基因产物单独时无功能,但共同形成一种热稳定的异源寡聚Rca,它可以将α-变形菌和红藻受抑制的rubisco复合物都用作底物。rubisco激活机制在细菌和藻类系统之间似乎是保守的,并且涉及rubisco大亚基C末端的穿入。虽然变构调节剂RuBP的结合会诱导细菌活化酶发生寡聚转变,但它只是增强了藻类酶中ATP水解的动力学。对核和质体异构体的突变分析表明亚基之间有很强的协同作用,并暗示核编码亚基在功能上占主导地位。质体编码的亚基可能在催化上是无活性的。通过移植具有增强动力学的红藻rubiscos来提高作物光合作用的努力需要考虑对兼容Rca的需求。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验