Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Neuroimage. 2022 Feb 1;246:118789. doi: 10.1016/j.neuroimage.2021.118789. Epub 2021 Dec 7.
Beamforming is a popular method for functional source reconstruction using magnetoencephalography (MEG) and electroencephalography (EEG) data. Beamformers, which were first proposed for MEG more than two decades ago, have since been applied in hundreds of studies, demonstrating that they are a versatile and robust tool for neuroscience. However, certain characteristics of beamformers remain somewhat elusive and there currently does not exist a unified documentation of the mathematical underpinnings and computational subtleties of beamformers as implemented in the most widely used academic open source software packages for MEG analysis (Brainstorm, FieldTrip, MNE, and SPM). Here, we provide such documentation that aims at providing the mathematical background of beamforming and unifying the terminology. Beamformer implementations are compared across toolboxes and pitfalls of beamforming analyses are discussed. Specifically, we provide details on handling rank deficient covariance matrices, prewhitening, the rank reduction of forward fields, and on the combination of heterogeneous sensor types, such as magnetometers and gradiometers. The overall aim of this paper is to contribute to contemporary efforts towards higher levels of computational transparency in functional neuroimaging.
波束形成是一种使用脑磁图 (MEG) 和脑电图 (EEG) 数据进行功能源重建的常用方法。波束形成器最初是在二十多年前为 MEG 提出的,此后已经在数百项研究中得到应用,证明它们是神经科学中一种通用且强大的工具。然而,波束形成器的某些特性仍然有些难以捉摸,目前在最广泛使用的用于 MEG 分析的学术开源软件包(Brainstorm、FieldTrip、MNE 和 SPM)中,并没有对波束形成器的数学基础和计算细微差别进行统一的文档记录。在这里,我们提供了这样的文档,旨在提供波束形成的数学背景并统一术语。我们比较了不同工具包中的波束形成器实现,并讨论了波束形成分析的陷阱。具体来说,我们提供了有关处理秩亏协方差矩阵、预白化、前向场的秩降低以及处理异质传感器类型(如磁强计和梯度计)组合的详细信息。本文的总体目标是为提高功能神经影像学计算透明度的当代努力做出贡献。