Hnazaee Mansoureh Fahimi, Sure Matthias, O'Neill George C, Leogrande Gaetano, Schnitzler Alfons, Florin Esther, Litvak Vladimir
Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom.
Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
Imaging Neurosci (Camb). 2023 Nov 7;1. doi: 10.1162/imag_a_00029. eCollection 2023.
The combination of subcortical Local Field Potential (LFP) recordings and stimulation with Magnetoencephalography (MEG) in Deep Brain Stimulation (DBS) patients enables the investigation of cortico-subcortical communication patterns and provides insights into DBS mechanisms. Until now, these recordings have been carried out in post-surgical patients with externalised leads. However, a new generation of telemetric stimulators makes it possible to record and stream LFP data in chronically implanted patients. Nevertheless, whether such streaming can be combined with MEG has not been tested. In the present study, we tested the most commonly implanted telemetric stimulator-Medtronic Percept PC with a phantom in three different MEG systems: two cryogenic scanners (CTF and MEGIN) and an experimental Optically Pumped Magnetometry (OPM)-based system. We found that when used in combination with the new SenSight segmented leads, Percept PC telemetric streaming only generates band-limited interference in the MEG at 123 Hz and harmonics. However, the "legacy streaming mode" used with older lead models generates multiple, dense artefact peaks in the physiological range of interest (below 50 Hz). The effect of stimulation on MEG critically depends on whether it is done in bipolar (between two contacts on the lead) or monopolar (between a lead contact and the stimulator case) mode. Monopolar DBS creates severe interference in the MEG as previously reported. However, we found that the OPM system is more resilient to this interference and could provide artefact-free measurements, at least for limited frequency ranges. A resting measurement in the MEGIN system from a Parkinson's patient implanted with Percept PC and subthalamic SenSight leads revealed artefact patterns consistent with our phantom recordings. Moreover, analysis of LFP-MEG coherence in this patient showed oscillatory coherent networks consistent in their frequency and topography with those described in published group studies done with externalised leads. In conclusion, Percept PC telemetric streaming with SenSight leads is compatible with MEG. Furthermore, OPM sensors could provide additional new opportunities for studying DBS effects.
在脑深部电刺激(DBS)患者中,将皮层下局部场电位(LFP)记录与磁脑电图(MEG)刺激相结合,能够研究皮质-皮层下的通信模式,并深入了解DBS机制。到目前为止,这些记录都是在术后带有外置导线的患者中进行的。然而,新一代遥测刺激器使得在长期植入患者中记录和传输LFP数据成为可能。尽管如此,这种数据流是否能与MEG结合尚未得到测试。在本研究中,我们在三种不同的MEG系统中,使用一个模型对最常用的植入式遥测刺激器——美敦力Percept PC进行了测试:两台低温扫描仪(CTF和MEGIN)和一个基于光泵磁力计(OPM)的实验系统。我们发现,当与新的SenSight分段导线结合使用时,Percept PC遥测数据流仅在MEG中产生123 Hz的带限干扰和谐波。然而,与旧导线模型一起使用的“传统流模式”在感兴趣的生理范围内(低于50 Hz)会产生多个密集的伪迹峰值。刺激对MEG的影响关键取决于它是以双极模式(导线的两个触点之间)还是单极模式(导线触点与刺激器外壳之间)进行。如先前报道,单极DBS会在MEG中产生严重干扰。然而,我们发现OPM系统对这种干扰更具弹性,并且至少在有限的频率范围内可以提供无伪迹测量。在植入了Percept PC和丘脑底核SenSight导线的帕金森病患者的MEGIN系统中进行的静息测量,揭示了与我们的模型记录一致的伪迹模式。此外,对该患者的LFP-MEG相干性分析表明,振荡相干网络在频率和地形上与使用外置导线进行的已发表组研究中描述的一致。总之,Percept PC与SenSight导线的遥测数据流与MEG兼容。此外,OPM传感器可为研究DBS效应提供额外的新机会。