Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1648-1652. doi: 10.1109/EMBC46164.2021.9630386.
This paper explores the relation between cognitive and physical aspects of the human body from a machine learning standpoint. We propose to use performance on cognitive assessments to predict frailty of elderly adults with different regression and classification models. We propose a preprocessing scheme with oversampling and imputation to overcome the challenge of an imbalanced data distribution on the existing dataset. We validate the capability of classification models to predict frailty on patients given cognitive input data and provide evidence that machine learning models depend on clinically-defined thresholds.
本文从机器学习的角度探讨了人体认知和身体方面之间的关系。我们提出使用认知评估的表现来预测不同回归和分类模型的老年人虚弱程度。我们提出了一个预处理方案,包括过采样和插补,以克服现有数据集上数据分布不平衡的挑战。我们验证了分类模型在给定认知输入数据的情况下预测患者虚弱程度的能力,并提供了证据表明机器学习模型依赖于临床定义的阈值。