Suppr超能文献

人工智能在老年人虚弱综合征的识别和诊断中的应用:范围综述。

Use of Artificial Intelligence in the Identification and Diagnosis of Frailty Syndrome in Older Adults: Scoping Review.

机构信息

ExPhy Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cádiz, Spain.

Advent Health Research Institute, Neuroscience Institute, Orlando, FL, United States.

出版信息

J Med Internet Res. 2023 Oct 20;25:e47346. doi: 10.2196/47346.

Abstract

BACKGROUND

Frailty syndrome (FS) is one of the most common noncommunicable diseases, which is associated with lower physical and mental capacities in older adults. FS diagnosis is mostly focused on biological variables; however, it is likely that this diagnosis could fail owing to the high biological variability in this syndrome. Therefore, artificial intelligence (AI) could be a potential strategy to identify and diagnose this complex and multifactorial geriatric syndrome.

OBJECTIVE

The objective of this scoping review was to analyze the existing scientific evidence on the use of AI for the identification and diagnosis of FS in older adults, as well as to identify which model provides enhanced accuracy, sensitivity, specificity, and area under the curve (AUC).

METHODS

A search was conducted using PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines on various databases: PubMed, Web of Science, Scopus, and Google Scholar. The search strategy followed Population/Problem, Intervention, Comparison, and Outcome (PICO) criteria with the population being older adults; intervention being AI; comparison being compared or not to other diagnostic methods; and outcome being FS with reported sensitivity, specificity, accuracy, or AUC values. The results were synthesized through information extraction and are presented in tables.

RESULTS

We identified 26 studies that met the inclusion criteria, 6 of which had a data set over 2000 and 3 with data sets below 100. Machine learning was the most widely used type of AI, employed in 18 studies. Moreover, of the 26 included studies, 9 used clinical data, with clinical histories being the most frequently used data type in this category. The remaining 17 studies used nonclinical data, most frequently involving activity monitoring using an inertial sensor in clinical and nonclinical contexts. Regarding the performance of each AI model, 10 studies achieved a value of precision, sensitivity, specificity, or AUC ≥90.

CONCLUSIONS

The findings of this scoping review clarify the overall status of recent studies using AI to identify and diagnose FS. Moreover, the findings show that the combined use of AI using clinical data along with nonclinical information such as the kinematics of inertial sensors that monitor activities in a nonclinical context could be an appropriate tool for the identification and diagnosis of FS. Nevertheless, some possible limitations of the evidence included in the review could be small sample sizes, heterogeneity of study designs, and lack of standardization in the AI models and diagnostic criteria used across studies. Future research is needed to validate AI systems with diverse data sources for diagnosing FS. AI should be used as a decision support tool for identifying FS, with data quality and privacy addressed, and the tool should be regularly monitored for performance after being integrated in clinical practice.

摘要

背景

衰弱综合征(FS)是最常见的非传染性疾病之一,与老年人较低的身心能力有关。FS 的诊断主要集中在生物学变量上;然而,由于该综合征具有较高的生物学变异性,这种诊断可能会失败。因此,人工智能(AI)可能是识别和诊断这种复杂的多因素老年综合征的潜在策略。

目的

本范围综述的目的是分析现有的关于使用 AI 识别和诊断老年人 FS 的科学证据,并确定哪种模型提供了更高的准确性、灵敏度、特异性和曲线下面积(AUC)。

方法

根据 PRISMA-ScR(系统评价和荟萃分析扩展的首选报告项目,用于范围综述)指南,在多个数据库(PubMed、Web of Science、Scopus 和 Google Scholar)上进行了搜索。搜索策略遵循人群/问题、干预、比较和结果(PICO)标准,人群为老年人;干预为 AI;比较为与其他诊断方法的比较或不比较;结果为 FS,报告了灵敏度、特异性、准确性或 AUC 值。结果通过信息提取进行综合,并以表格形式呈现。

结果

我们确定了 26 项符合纳入标准的研究,其中 6 项数据集超过 2000 项,3 项数据集低于 100 项。机器学习是使用最广泛的 AI 类型,在 18 项研究中使用。此外,在 26 项纳入的研究中,有 9 项使用了临床数据,其中临床病史是该类别中最常用的数据类型。其余 17 项研究使用了非临床数据,最常涉及在临床和非临床环境中使用惯性传感器进行活动监测。关于每个 AI 模型的性能,有 10 项研究达到了精度、灵敏度、特异性或 AUC 值≥90 的值。

结论

本范围综述的结果阐明了最近使用 AI 识别和诊断 FS 的研究的总体状况。此外,研究结果表明,结合使用 AI 结合临床数据以及非临床信息,例如在非临床环境中监测活动的惯性传感器的运动学,可能是识别和诊断 FS 的合适工具。然而,综述中包含的证据可能存在一些局限性,例如样本量小、研究设计的异质性以及在研究中使用的 AI 模型和诊断标准缺乏标准化。需要进一步的研究来验证使用不同数据源诊断 FS 的 AI 系统。AI 应作为识别 FS 的决策支持工具,同时要解决数据质量和隐私问题,并在将工具集成到临床实践后定期监测其性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验