Suppr超能文献

基于呼吸和咳嗽信息的新型多类型深度融合方法的 COVID-19 检测。

COVID-19 Detection with a Novel Multi-Type Deep Fusion Method using Breathing and Coughing Information.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1840-1843. doi: 10.1109/EMBC46164.2021.9630050.

Abstract

This study explores the use of deep learning-based methods for the automatic detection of COVID-19. Specifically, we aim to investigate the involvement of the virus in the respiratory system by analysing breathing and coughing sounds. Our hypothesis resides in the complementarity of both data types for the task at hand. Therefore, we focus on the analysis of fusion mechanisms to enrich the information available for the diagnosis. In this work, we introduce a novel injection fusion mechanism that considers the embedded representations learned from one data type to extract the embedded representations of the other data type. Our experiments are performed on a crowdsourced database with breathing and coughing sounds recorded using both a web-based application, and a smartphone app. The results obtained support the feasibility of the injection fusion mechanism presented, as the models trained with this mechanism outperform single-type models and multi-type models using conventional fusion mechanisms.

摘要

本研究探讨了基于深度学习的方法在 COVID-19 自动检测中的应用。具体而言,我们旨在通过分析呼吸和咳嗽声音来研究病毒在呼吸系统中的作用。我们的假设在于这两种数据类型对于手头任务的互补性。因此,我们专注于分析融合机制,以丰富用于诊断的信息。在这项工作中,我们引入了一种新颖的注入式融合机制,该机制考虑了从一种数据类型中学习到的嵌入式表示,以提取另一种数据类型的嵌入式表示。我们的实验是在一个众包数据库上进行的,该数据库使用基于网络的应用程序和智能手机应用程序记录了呼吸和咳嗽声音。所得结果支持所提出的注入式融合机制的可行性,因为使用该机制训练的模型优于使用传统融合机制的单类型模型和多类型模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验