Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1932-1935. doi: 10.1109/EMBC46164.2021.9630378.
Driven by the advancements of wearable sensors and signal processing algorithms, studies on continuous real-world monitoring are of major interest in the field of clinical gait and motion analysis. While real-world studies enable a more detailed and realistic insight into various mobility parameters such as walking speed, confounding and environmental factors might skew those digital mobility outcomes (DMOs), making the interpretation of results challenging. To consider confounding factors, context information needs to be included in the analysis. In this work, we present a context-aware mobile gait analysis system that can distinguish between gait recorded at home and not at home based on Bluetooth proximity information. The system was evaluated on 9 healthy subjects and 6 Parkinsons disease (PD) patients. The classification of the at home/not at home context reached an average F1-score of 98.2 ± 3.2 %. A context-aware analysis of gait parameters revealed different walking bout length distributions between the two environmental conditions. Furthermore, a reduction of gait speed within the at home context compared to walking not at home of 8.9 ± 9.4 % and 8.7 ±5.9 % on average for healthy and PD subjects was found, respectively. Our results indicate the influence of the recording environment on DMOs and, therefore, emphasize the importance of context in the analysis of continuous motion data. Hence, the presented work contributes to a better understanding of confounding factors for future real-world studies.
受可穿戴传感器和信号处理算法的推动,临床步态和运动分析领域对连续的真实世界监测研究产生了浓厚的兴趣。虽然真实世界的研究能够更详细和真实地了解各种移动性参数,如行走速度,但混杂因素和环境因素可能会扭曲这些数字移动性结果(DMO),使得结果的解释具有挑战性。为了考虑混杂因素,需要在分析中包含上下文信息。在这项工作中,我们提出了一个基于蓝牙接近信息的上下文感知移动步态分析系统,该系统可以区分在家中和不在家时记录的步态。该系统在 9 名健康受试者和 6 名帕金森病(PD)患者中进行了评估。在家/不在家的上下文分类平均达到了 98.2±3.2%的 F1 分数。对步态参数的上下文感知分析揭示了两种环境条件下不同的行走回合长度分布。此外,还发现与不在家时相比,健康受试者和 PD 受试者在家中环境下的行走速度分别平均降低了 8.9±9.4%和 8.7±5.9%。我们的研究结果表明了记录环境对 DMO 的影响,因此强调了在分析连续运动数据时上下文的重要性。因此,所提出的工作有助于更好地理解未来真实世界研究中的混杂因素。