Machine Learning and Data Analytics Lab (MaD Lab), Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany.
WS Audiology, 91058 Erlangen, Germany.
Sensors (Basel). 2023 Jul 20;23(14):6565. doi: 10.3390/s23146565.
Wearable sensors are able to monitor physical health in a home environment and detect changes in gait patterns over time. To ensure long-term user engagement, wearable sensors need to be seamlessly integrated into the user's daily life, such as hearing aids or earbuds. Therefore, we present EarGait, an open-source Python toolbox for gait analysis using inertial sensors integrated into hearing aids. This work contributes a validation for gait event detection algorithms and the estimation of temporal parameters using ear-worn sensors. We perform a comparative analysis of two algorithms based on acceleration data and propose a modified version of one of the algorithms. We conducted a study with healthy young and elderly participants to record walking data using the hearing aid's integrated sensors and an optical motion capture system as a reference. All algorithms were able to detect gait events (initial and terminal contacts), and the improved algorithm performed best, detecting 99.8% of initial contacts and obtaining a mean stride time error of 12 ± 32 ms. The existing algorithms faced challenges in determining the laterality of gait events. To address this limitation, we propose modifications that enhance the determination of the step laterality (ipsi- or contralateral), resulting in a 50% reduction in stride time error. Moreover, the improved version is shown to be robust to different study populations and sampling frequencies but is sensitive to walking speed. This work establishes a solid foundation for a comprehensive gait analysis system integrated into hearing aids that will facilitate continuous and long-term home monitoring.
可穿戴传感器能够在家居环境中监测身体健康状况,并检测步态模式随时间的变化。为了确保长期用户参与,可穿戴传感器需要无缝集成到用户的日常生活中,例如助听器或耳塞。因此,我们提出了 EarGait,这是一个使用集成在助听器中的惯性传感器进行步态分析的开源 Python 工具包。这项工作为使用耳戴式传感器的步态事件检测算法和时间参数估计提供了验证。我们基于加速度数据对两种算法进行了比较分析,并提出了其中一种算法的改进版本。我们对健康的年轻和老年参与者进行了一项研究,使用助听器集成的传感器和光学运动捕捉系统记录行走数据作为参考。所有算法都能够检测到步态事件(初始和终端接触),改进后的算法表现最佳,能够检测到 99.8%的初始接触,并获得 12±32ms 的平均步长时间误差。现有的算法在确定步态事件的侧别方面面临挑战。为了解决这个局限性,我们提出了改进措施,增强了对步幅侧别的确定(同侧或对侧),从而将步长时间误差降低了 50%。此外,改进后的版本被证明对不同的研究人群和采样频率具有鲁棒性,但对行走速度敏感。这项工作为集成到助听器中的全面步态分析系统奠定了坚实的基础,这将有助于实现连续和长期的家庭监测。