Suppr超能文献

SomnNET:一种基于 SpO2 的深度学习网络,用于智能手表中的睡眠呼吸暂停检测。

SomnNET: An SpO2 Based Deep Learning Network for Sleep Apnea Detection in Smartwatches.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1961-1964. doi: 10.1109/EMBC46164.2021.9631037.

Abstract

The abnormal pause or rate reduction in breathing is known as the sleep-apnea hypopnea syndrome and affects the quality of sleep of an individual. A novel method for the detection of sleep apnea events (pause in breathing) from peripheral oxygen saturation (SpO2) signals obtained from wearable devices is discussed in this paper. The paper details an apnea detection algorithm of a very high resolution on a per-second basis for which a 1-dimensional convolutional neural network- which we termed SomnNET- is developed. This network exhibits an accuracy of 97.08% and outperforms several lower resolution state-of-the-art apnea detection methods. The feasibility of model pruning and binarization to reduce the computational complexity is explored. The pruned network with 80% sparsity exhibited an accuracy of 89.75%, and the binarized network exhibited an accuracy of 68.22%. The performance of the proposed networks is compared against several state-of-the-art algorithms.

摘要

呼吸的异常停顿或速率降低称为睡眠呼吸暂停低通气综合征,会影响个体的睡眠质量。本文讨论了一种从可穿戴设备获取的外周血氧饱和度 (SpO2) 信号中检测睡眠呼吸暂停事件(呼吸暂停)的新方法。本文详细介绍了一种基于每秒的非常高分辨率的呼吸暂停检测算法,为此我们开发了一个一维卷积神经网络——SomnNET。该网络的准确率为 97.08%,优于几种较低分辨率的最新呼吸暂停检测方法。还探索了模型剪枝和二值化以降低计算复杂度的可行性。具有 80%稀疏性的剪枝网络的准确率为 89.75%,而二值化网络的准确率为 68.22%。将所提出的网络的性能与几种最先进的算法进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验