Suppr超能文献

使用卷积神经网络从原始心电图和血氧饱和度信号中实时检测阻塞性睡眠呼吸暂停

Real-Time Obstructive Sleep Apnea Detection from Raw ECG and SpO Signal Using Convolutional Neural Network.

作者信息

Paul Tanmoy, Hassan Omiya, Islam Syed K, Mosa Abu S M

机构信息

Department of Electrical Engineering and Computer Science.

NextGen Biomedical Informatics Center.

出版信息

AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:662-669. eCollection 2024.

Abstract

Obstructive sleep apnea is a sleep disorder that is linked with many health complications and severe form of apnea can even be lethal. Overnight polysomnography is the gold standard for diagnosing apnea, which is expensive, time-consuming, and requires manual analysis by a sleep expert. Recently, there have been numerous studies demonstrating the application of artificial intelligence to detect apnea in real time. But the majority of these studies apply data pre-processing and feature extraction techniques resulting in a longer inference time that makes the real-time detection system inefficient. This study proposes a single convolutional neural network architecture that can automatically extract spatial features and detect apnea from both electrocardiogram (ECG) and blood-oxygen saturation (SpO) signals. Using segments of 10s, the network classified apnea with an accuracy of 94.2% and 96% for ECG and SpO respectively. Moreover, the overall performance of both models was consistent with an AUC score of 0.99.

摘要

阻塞性睡眠呼吸暂停是一种与多种健康并发症相关的睡眠障碍,严重形式的呼吸暂停甚至可能致命。夜间多导睡眠图是诊断呼吸暂停的金标准,但它昂贵、耗时,且需要睡眠专家进行人工分析。最近,有许多研究证明了人工智能在实时检测呼吸暂停方面的应用。但这些研究大多应用数据预处理和特征提取技术,导致推理时间更长,使得实时检测系统效率低下。本研究提出了一种单一卷积神经网络架构,该架构可以自动提取空间特征,并从心电图(ECG)和血氧饱和度(SpO)信号中检测呼吸暂停。使用10秒的片段,该网络对心电图和SpO的呼吸暂停分类准确率分别为94.2%和96%。此外,两个模型的整体性能一致,AUC评分为0.99。

相似文献

1
Real-Time Obstructive Sleep Apnea Detection from Raw ECG and SpO Signal Using Convolutional Neural Network.
AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:662-669. eCollection 2024.
2
ECG and SpO Signal-Based Real-Time Sleep Apnea Detection Using Feed-Forward Artificial Neural Network.
AMIA Jt Summits Transl Sci Proc. 2022 May 23;2022:379-385. eCollection 2022.
3
SCNN: Scalogram-based convolutional neural network to detect obstructive sleep apnea using single-lead electrocardiogram signals.
Comput Biol Med. 2021 Jul;134:104532. doi: 10.1016/j.compbiomed.2021.104532. Epub 2021 May 29.
5
A fused-image-based approach to detect obstructive sleep apnea using a single-lead ECG and a 2D convolutional neural network.
PLoS One. 2021 Apr 26;16(4):e0250618. doi: 10.1371/journal.pone.0250618. eCollection 2021.
10
A 2D convolutional neural network to detect sleep apnea in children using airflow and oximetry.
Comput Biol Med. 2022 Aug;147:105784. doi: 10.1016/j.compbiomed.2022.105784. Epub 2022 Jun 28.

引用本文的文献

1
SASBLS: An Advanced Model for Sleep Apnea Detection Based on Single-Channel SpO2.
Sensors (Basel). 2025 Feb 28;25(5):1523. doi: 10.3390/s25051523.

本文引用的文献

1
ECG and SpO Signal-Based Real-Time Sleep Apnea Detection Using Feed-Forward Artificial Neural Network.
AMIA Jt Summits Transl Sci Proc. 2022 May 23;2022:379-385. eCollection 2022.
2
SomnNET: An SpO2 Based Deep Learning Network for Sleep Apnea Detection in Smartwatches.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1961-1964. doi: 10.1109/EMBC46164.2021.9631037.
3
Multimodal Multiresolution Data Fusion Using Convolutional Neural Networks for IoT Wearable Sensing.
IEEE Trans Biomed Circuits Syst. 2021 Dec;15(6):1161-1173. doi: 10.1109/TBCAS.2021.3134043. Epub 2022 Feb 17.
4
Text Data Augmentation for Deep Learning.
J Big Data. 2021;8(1):101. doi: 10.1186/s40537-021-00492-0. Epub 2021 Jul 19.
7
Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram.
Comput Methods Programs Biomed. 2019 Oct;180:105001. doi: 10.1016/j.cmpb.2019.105001. Epub 2019 Jul 30.
8
Polysomnography.
Handb Clin Neurol. 2019;160:381-392. doi: 10.1016/B978-0-444-64032-1.00025-4.
9
Evaluation of Machine-Learning Approaches to Estimate Sleep Apnea Severity From At-Home Oximetry Recordings.
IEEE J Biomed Health Inform. 2019 Mar;23(2):882-892. doi: 10.1109/JBHI.2018.2823384. Epub 2018 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验