Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2191-2196. doi: 10.1109/EMBC46164.2021.9630994.
The majority of studies for automatic epileptic seizure (ictal) detection are based on electroencephalogram (EEG) data, but electrocardiogram (ECG) presents a simpler and more wearable alternative for long-term ambulatory monitoring. To assess the performance of EEG and ECG signals, AI systems offer a promising way forward for developing high performing models in securing both a reasonable sensitivity and specificity. There are crucial needs for these AI systems to be developed with more clinical relevance and inference generalization. In this work, we implement an ECG-specific convolutional neural network (CNN) model with residual layers and an EEG-specific convolutional long short-term memory (ConvLSTM) model. We trained, validated, and tested these models on a publicly accessible Temple University Hospital (TUH) dataset for reproducibility and performed a non-patient-specific inference-only test on patient EEG and ECG data of The Royal Prince Alfred Hospital (RPAH) in Sydney, Australia. We selected 31 adult patients to balance groups with the following seizure types: generalized, frontal, frontotemporal, temporal, parietal, and unspecific focal epilepsy. Our tests on both EEG and ECG of these patients achieve an AUC score of 0.75. Our results show ECG outperforms EEG with an average improvement of 0.21 and 0.11 AUC score in patients with frontal and parietal focal seizures, respectively.Clinical relevance-Prior research has demonstrated the value of using ECG for seizure documentation. It is believed that specific epileptic foci (seizure origin) may involve network inputs to the autonomic nervous system. Our result indicates that ECG could outperform EEG for individuals with specific seizure origin, particularly in the frontal and parietal lobes.
大多数自动癫痫发作(癫痫发作)检测的研究都是基于脑电图(EEG)数据,但心电图(ECG)为长期动态监测提供了一种更简单、更可穿戴的替代方案。为了评估 EEG 和 ECG 信号的性能,人工智能系统为开发高性能模型提供了一种有前途的方法,以确保合理的灵敏度和特异性。这些 AI 系统迫切需要更具临床相关性和推理泛化能力。在这项工作中,我们实现了一个具有残差层的 ECG 特定卷积神经网络(CNN)模型和一个 EEG 特定卷积长短期记忆(ConvLSTM)模型。我们在一个可公开访问的 Temple 大学医院(TUH)数据集上对这些模型进行了训练、验证和测试,以实现可重复性,并对澳大利亚悉尼的皇家阿尔弗雷德王子医院(RPAH)的患者 EEG 和 ECG 数据进行了非患者特定的仅推理测试。我们选择了 31 名成年患者,以平衡具有以下癫痫发作类型的组:全面性、额叶、额颞叶、颞叶、顶叶和非特异性局灶性癫痫。我们对这些患者的 EEG 和 ECG 进行的测试均获得了 0.75 的 AUC 评分。我们的结果表明,ECG 的表现优于 EEG,在额叶和顶叶局灶性癫痫患者中,AUC 评分分别平均提高了 0.21 和 0.11。临床相关性-先前的研究已经证明了使用 ECG 进行癫痫发作记录的价值。据信,特定的癫痫灶(癫痫发作起源)可能涉及自主神经系统的网络输入。我们的结果表明,对于具有特定癫痫起源的个体,ECG 可能优于 EEG,特别是在额叶和顶叶。