Suppr超能文献

一种用于癫痫识别的分布外泛化的多模态 AI 系统。

A Multimodal AI System for Out-of-Distribution Generalization of Seizure Identification.

出版信息

IEEE J Biomed Health Inform. 2022 Jul;26(7):3529-3538. doi: 10.1109/JBHI.2022.3157877. Epub 2022 Jul 1.

Abstract

Artificial intelligence (AI) and health sensory data-fusion hold the potential to automate many laborious and time-consuming processes in hospitals or ambulatory settings, e.g. home monitoring and telehealth. One such unmet challenge is rapid and accurate epileptic seizure annotation. An accurate and automatic approach can provide an alternative way to label seizures in epilepsy or deliver a substitute for inaccurate patient self-reports. Multimodal sensory fusion is believed to provide an avenue to improve the performance of AI systems in seizure identification. We propose a state-of-the-art performing AI system that combines electroencephalogram (EEG) and electrocardiogram (ECG) for seizure identification, tested on clinical data with early evidence demonstrating generalization across hospitals. The model was trained and validated on the publicly available Temple University Hospital (TUH) dataset. To evaluate performance in a clinical setting, we conducted non-patient-specific pseudo-prospective inference tests on three out-of-distribution datasets, including EPILEPSIAE (30 patients) and the Royal Prince Alfred Hospital (RPAH) in Sydney, Australia (31 neurologists-shortlisted patients and 30 randomly selected). Our multimodal approach improves the area under the receiver operating characteristic curve (AUC-ROC) by an average margin of 6.71% and 14.42% for deep learning techniques using EEG-only and ECG-only, respectively. Our model's state-of-the-art performance and robustness to out-of-distribution datasets show the accuracy and efficiency necessary to improve epilepsy diagnoses. To the best of our knowledge, this is the first pseudo-prospective study of an AI system combining EEG and ECG modalities for automatic seizure annotation achieved with fusion of two deep learning networks.

摘要

人工智能 (AI) 和健康传感器数据融合有可能使医院或门诊环境中的许多繁琐和耗时的流程实现自动化,例如家庭监测和远程医疗。其中一个未满足的挑战是快速准确地对癫痫发作进行注释。准确和自动的方法可以为癫痫中的癫痫发作提供替代标签,或提供不准确的患者自述的替代方法。多模态传感器融合被认为是提高 AI 系统在癫痫发作识别性能的一种途径。我们提出了一种最先进的 AI 系统,该系统结合了脑电图 (EEG) 和心电图 (ECG) 进行癫痫发作识别,在具有早期证据表明可在多家医院推广的临床数据上进行了测试。该模型在公开的坦普尔大学医院 (TUH) 数据集上进行了训练和验证。为了在临床环境中评估性能,我们对三个分布外数据集进行了非患者特定的伪前瞻性推理测试,包括 EPILEPSIAE(30 名患者)和澳大利亚悉尼的皇家阿尔弗雷德王子医院 (RPAH)(31 名精选神经科医生患者和 30 名随机选择的患者)。我们的多模态方法平均将深度学习技术的接收者操作特征曲线下面积 (AUC-ROC) 提高了 6.71%和 14.42%,分别用于 EEG 仅和 ECG 仅。我们的模型的最先进的性能和对分布外数据集的鲁棒性表明了提高癫痫诊断准确性和效率的必要性。据我们所知,这是第一个结合 EEG 和 ECG 模式的 AI 系统进行自动癫痫发作注释的伪前瞻性研究,通过融合两个深度学习网络实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验