Suppr超能文献

使用压力中心数据和机器学习早期检测帕金森病。

Early Detection of Parkinson's Disease Using Center of Pressure Data and Machine Learning.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2433-2436. doi: 10.1109/EMBC46164.2021.9630451.

Abstract

Parkinson's disease (PD) is a progressive neurodegenerative disorder resulting in abnormal body movements. Postural instability is one of the primary motor symptoms of PD and contributes to falls. Measurement of postural sway through center of pressure (COP) data might be an objective indicator of Parkinson's disease. The goal of this work is to use machine learning to evaluate if different features of postural sway can differentiate PD patients from healthy controls. Time domain, frequency domain, time-frequency, and structural features were extracted from COP data collected from 19 PD patients and 13 healthy controls (HC). The calculated parameters were input to various machine-learning models to classify PD and HC. Random Forest outperformed the rest of the classifiers in terms of accuracy, false negative rate, F1-score, and precision. Time domain features had the best performance in differentiating PD from HC compared to other feature groups.

摘要

帕金森病(PD)是一种进行性神经退行性疾病,导致异常的身体运动。姿势不稳定是 PD 的主要运动症状之一,也是导致跌倒的原因之一。通过压力中心(COP)数据测量姿势摆动可能是帕金森病的一个客观指标。这项工作的目的是使用机器学习来评估姿势摆动的不同特征是否可以区分帕金森病患者和健康对照组。从 19 名帕金森病患者和 13 名健康对照组(HC)收集的 COP 数据中提取了时域、频域、时频和结构特征。计算出的参数被输入到各种机器学习模型中,以对 PD 和 HC 进行分类。随机森林在准确性、误报率、F1 分数和精度方面优于其他分类器。与其他特征组相比,时域特征在区分 PD 和 HC 方面表现最佳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验