Suppr超能文献

基于多特征多尺度卷积神经网络的肺部超声 COVID-19 分类。

Multi-feature Multi-Scale CNN-Derived COVID-19 Classification from Lung Ultrasound Data.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2618-2621. doi: 10.1109/EMBC46164.2021.9631069.

Abstract

The global pandemic of the novel coronavirus disease 2019 (COVID-19) has put tremendous pressure on the medical system. Imaging plays a complementary role in the management of patients with COVID-19. Computed tomography (CT) and chest X-ray (CXR) are the two dominant screening tools. However, difficulty in eliminating the risk of disease transmission, radiation exposure and not being cost-effective are some of the challenges for CT and CXR imaging. This fact induces the implementation of lung ultrasound (LUS) for evaluating COVID-19 due to its practical advantages of noninvasiveness, repeatability, and sensitive bedside property. In this paper, we utilize a deep learning model to perform the classification of COVID-19 from LUS data, which could produce objective diagnostic information for clinicians. Specifically, all LUS images are processed to obtain their corresponding local phase filtered images and radial symmetry transformed images before fed into the multi-scale residual convolutional neural network (CNN). Secondly, image combination as the input of the network is used to explore rich and reliable features. Feature fusion strategy at different levels is adopted to investigate the relationship between the depth of feature aggregation and the classification accuracy. Our proposed method is evaluated on the point-of-care US (POCUS) dataset together with the Italian COVID-19 Lung US database (ICLUS-DB) and shows promising performance for COVID-19 prediction.

摘要

新型冠状病毒病 2019(COVID-19)的全球大流行给医疗系统带来了巨大压力。影像学在 COVID-19 患者的管理中起着补充作用。计算机断层扫描(CT)和胸部 X 线(CXR)是两种主要的筛查工具。然而,CT 和 CXR 成像存在疾病传播风险、辐射暴露和不具有成本效益等挑战。由于超声检查具有无创、可重复、敏感的床边特性,因此在评估 COVID-19 方面实施了肺部超声(LUS)。在本文中,我们利用深度学习模型对 LUS 数据进行 COVID-19 分类,为临床医生提供客观的诊断信息。具体来说,对所有 LUS 图像进行处理,以获得其相应的局部相位滤波图像和径向对称变换图像,然后将其输入多尺度残差卷积神经网络(CNN)。其次,采用图像组合作为网络的输入,以探索丰富可靠的特征。采用不同层次的特征融合策略来研究特征聚合的深度与分类准确性之间的关系。我们的方法在床边超声(POCUS)数据集上进行了评估,同时也在意大利 COVID-19 肺部超声数据库(ICLUS-DB)上进行了评估,对于 COVID-19 的预测表现出了有前景的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验