Suppr超能文献

自动分割牙根管并与牙冠形状融合。

Automatic Segmentation of Dental Root Canal and Merging with Crown Shape.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2948-2951. doi: 10.1109/EMBC46164.2021.9630750.

Abstract

In this paper, machine learning approaches are proposed to support dental researchers and clinicians to study the shape and position of dental crowns and roots, by implementing a Patient Specific Classification and Prediction tool that includes RootCanalSeg and DentalModelSeg algorithms and then merges the output of these tools for intraoral scanning and volumetric dental imaging. RootCanalSeg combines image processing and machine learning approaches to automatically segment the root canals of the lower and upper jaws from large datasets, providing clinical information on tooth long axis for orthodontics, endodontics, prosthodontic and restorative dentistry procedures. DentalModelSeg includes segmenting the teeth from the crown shape to provide clinical information on each individual tooth. The merging algorithm then allows users to integrate dental models for quantitative assessments. Precision in dentistry has been mainly driven by dental crown surface characteristics, but information on tooth root morphology and position is important for successful root canal preparation, pulp regeneration, planning of orthodontic movement, restorative and implant dentistry. In this paper we propose a patient specific classification and prediction of dental root canal and crown shape analysis workflow that employs image processing and machine learning methods to analyze crown surfaces, obtained by intraoral scanners, and three-dimensional volumetric images of the jaws and teeth root canals, obtained by cone beam computed tomography (CBCT).

摘要

本文提出了机器学习方法,通过实现一个包含 RootCanalSeg 和 DentalModelSeg 算法的患者特定分类和预测工具,并将这些工具的输出合并用于口腔内扫描和容积牙科成像,来支持牙科研究人员和临床医生研究牙冠和牙根的形状和位置。RootCanalSeg 结合图像处理和机器学习方法,从大型数据集自动分割下颌和上颌的根管,为正畸、牙髓病学、修复牙科学和修复学程序提供牙齿长轴的临床信息。DentalModelSeg 包括从牙冠形状分割牙齿,为每个单独牙齿提供临床信息。然后,合并算法允许用户集成牙科模型进行定量评估。牙科的精度主要由牙冠表面特征驱动,但牙根形态和位置的信息对于成功的根管预备、牙髓再生、正畸移动规划、修复和种植牙科计划非常重要。在本文中,我们提出了一种基于图像处理和机器学习方法的患者特定的根管和牙冠形状分析工作流程的分类和预测,用于分析通过口腔内扫描仪获得的牙冠表面以及通过锥形束计算机断层扫描 (CBCT) 获得的颌骨和牙齿根管的三维容积图像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验