Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3439-3442. doi: 10.1109/EMBC46164.2021.9630854.
Automatic classification of medical images plays an essential role in computer-aided diagnosis. However, the medical images arise from the small number of available data and the improvement of existing data-enhancement methods are limited. In order to fulfil this demand, a Multi-Modal Broad Learning System (M-BLS) is proposed, which has two subnetworks for simultaneous learning of both medical images and the corresponding radiology reports. M-BLS provides two advantages: i) our M-BLS has closed-form solution and avoids iterative training, once the image feature is available; ii) benefit from the simultaneous learning of both image and text data, our M-BLS achieves high accuracy for medical classification. Experimental results on the publicly available datasets IU X-RAY and PEIR GROSS_895 show that our M-BLS highly improves the classification performance, compared to SOTA deep models that learn single-type of data information only.
医学图像的自动分类在计算机辅助诊断中起着至关重要的作用。然而,医学图像的数据来源有限,现有的数据增强方法的改进也有限。为了满足这一需求,提出了一种多模态广泛学习系统(M-BLS),它有两个子网,用于同时学习医学图像和相应的放射学报告。M-BLS 提供了两个优势:i)我们的 M-BLS 具有封闭形式的解,并且一旦获得图像特征,就可以避免迭代训练;ii)受益于同时学习图像和文本数据,我们的 M-BLS 实现了医学分类的高精度。在公开可用的 IU X-RAY 和 PEIR GROSS_895 数据集上的实验结果表明,与仅学习单一类型数据信息的 SOTA 深度模型相比,我们的 M-BLS 极大地提高了分类性能。