Suppr超能文献

基于协同深度学习的医学图像分类。

Medical image classification using synergic deep learning.

机构信息

National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China; School of Computer Science, University of Adelaide, SA 5005, Australia.

School of Computer Science, University of Adelaide, SA 5005, Australia.

出版信息

Med Image Anal. 2019 May;54:10-19. doi: 10.1016/j.media.2019.02.010. Epub 2019 Feb 18.

Abstract

The classification of medical images is an essential task in computer-aided diagnosis, medical image retrieval and mining. Although deep learning has shown proven advantages over traditional methods that rely on the handcrafted features, it remains challenging due to the significant intra-class variation and inter-class similarity caused by the diversity of imaging modalities and clinical pathologies. In this paper, we propose a synergic deep learning (SDL) model to address this issue by using multiple deep convolutional neural networks (DCNNs) simultaneously and enabling them to mutually learn from each other. Each pair of DCNNs has their learned image representation concatenated as the input of a synergic network, which has a fully connected structure that predicts whether the pair of input images belong to the same class. Thus, if one DCNN makes a correct classification, a mistake made by the other DCNN leads to a synergic error that serves as an extra force to update the model. This model can be trained end-to-end under the supervision of classification errors from DCNNs and synergic errors from each pair of DCNNs. Our experimental results on the ImageCLEF-2015, ImageCLEF-2016, ISIC-2016, and ISIC-2017 datasets indicate that the proposed SDL model achieves the state-of-the-art performance in these medical image classification tasks.

摘要

医学图像分类是计算机辅助诊断、医学图像检索和挖掘中的一项重要任务。尽管深度学习在依赖手工特征的传统方法上表现出了明显的优势,但由于成像方式和临床病理的多样性导致的类内变化和类间相似性显著,因此仍然具有挑战性。在本文中,我们提出了一种协同深度学习(SDL)模型,通过同时使用多个深度卷积神经网络(DCNN)并使它们相互学习来解决这个问题。每对 DCNN 的学习图像表示被连接作为协同网络的输入,协同网络具有全连接结构,用于预测输入的一对图像是否属于同一类。因此,如果一个 DCNN 做出了正确的分类,另一个 DCNN 的错误就会导致协同错误,从而为更新模型提供额外的力量。该模型可以在 DCNN 的分类错误和每对 DCNN 的协同错误的监督下进行端到端训练。我们在 ImageCLEF-2015、ImageCLEF-2016、ISIC-2016 和 ISIC-2017 数据集上的实验结果表明,所提出的 SDL 模型在这些医学图像分类任务中达到了最新的性能水平。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验