Suppr超能文献

基于基因分型的深度放射组学特征改善非小细胞肺癌复发预测。

Improved Genotype-Guided Deep Radiomics Signatures for Recurrence Prediction of Non-Small Cell Lung Cancer.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3561-3564. doi: 10.1109/EMBC46164.2021.9630703.

Abstract

Non-small cell lung cancer (NSCLC) is a type of lung cancer that has a high recurrence rate after surgery. Precise prediction of preoperative prognosis for NSCLC recurrence tends to contribute to the suitable preparation for treatment. Currently, many studied have been conducted to predict the recurrence of NSCLC based on Computed Tomography-images (CT images) or genetic data. The CT image is not expensive but inaccurate. The gene data is more expensive but has high accuracy. In this study, we proposed a genotype-guided radiomics method called GGR and GGR_Fusion to make a higher accuracy prediction model with requires only CT images. The GGR is a two-step method which is consists of two models: the gene estimation model using deep learning and the recurrence prediction model using estimated genes. We further propose an improved performance model based on the GGR model called GGR_Fusion to improve the accuracy. The GGR_Fusion uses the extracted features from the gene estimation model to enhance the recurrence prediction model. The experiments showed that the prediction performance can be improved significantly from 78.61% accuracy, AUC=0.66 (existing radiomics method), 79.09% accuracy, AUC=0.68 (deep learning method) to 83.28% accuracy, AUC=0.77 by the proposed GGR and 84.39% accuracy, AUC=0.79 by the proposed GGR_Fusion.Clinical Relevance-This study improved the preoperative recurrence of NSCLC prediction accuracy from 78.61% by the conventional method to 84.39% by our proposed method using only the CT image.

摘要

非小细胞肺癌(NSCLC)是一种手术后复发率较高的肺癌。准确预测 NSCLC 复发的术前预后有助于为治疗做好适当的准备。目前,已有许多研究基于计算机断层扫描图像(CT 图像)或基因数据来预测 NSCLC 的复发。CT 图像不贵但不准确。基因数据更昂贵但准确性更高。在这项研究中,我们提出了一种称为 GGR 的基于基因型的放射组学方法和 GGR_Fusion,使用仅需要 CT 图像即可做出更高准确性的预测模型。GGR 是一种两步法,由两个模型组成:使用深度学习的基因估计模型和使用估计基因的复发预测模型。我们进一步提出了一种基于 GGR 模型的改进性能模型,称为 GGR_Fusion,以提高准确性。GGR_Fusion 使用从基因估计模型中提取的特征来增强复发预测模型。实验表明,通过使用 GGR 可将预测性能从 78.61%的准确性,AUC=0.66(现有放射组学方法)、79.09%的准确性,AUC=0.68(深度学习方法)提高到 83.28%的准确性,AUC=0.77;通过使用 GGR_Fusion 可将预测性能提高到 84.39%的准确性,AUC=0.79。临床意义-本研究通过仅使用 CT 图像,将传统方法的 NSCLC 术前复发预测准确性从 78.61%提高到了 84.39%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验