Suppr超能文献

利用增强卷积序列网络改善肺癌检测

Improving lung cancer detection with enhanced convolutional sequential networks.

作者信息

Haziq Usman, Uddin Jamal, Rahman Shahid, Yaseen Muhammad, Khan Inayat, Khan Jawad, Jung Younhyun

机构信息

Department of Computer Science, Riphah International University, Lahore, 55150, Punjab, Pakistan.

Department of Computer Science, University of Buner, Swari, 17290, Khyber Pakhtunkhwa, Pakistan.

出版信息

Sci Rep. 2025 Sep 1;15(1):32099. doi: 10.1038/s41598-025-06653-y.

Abstract

Lung cancer is the most common cause of cancer-related deaths worldwide, and early detection is extremely important for improving survival. According to the National Institute of Health Sciences, lung cancer has the highest rate of cancer mortality, according to the National Institute of Health Sciences. Medical professionals are usually based on clinical imaging methods such as MRI, X-ray, biopsy, ultrasound, and CT scans. However, these imaging techniques often face challenges including false positives, false negatives, and sensitivity. Deep learning approaches, particularly folding networks (CNNS), have arisen as they tackle these issues. However, traditional CNN models often suffer from high computing complexity, slow inference times and over adaptation in real-world clinical data. To overcome these limitations, we propose an optimized sequential folding network (SCNN) that maintains a high level of classification accuracy, simultaneously reducing processing time and computing load. The SCNN model consists of three folding layers, three maximum pooling layers, flat layers and dense layers, allowing for efficient and accurate classification. In the histological imaging dataset, three categories of lung cancer models are adenocarcinoma, benign and squamous cell carcinoma. Our SCNN achieves an average accuracy of 95.34%, an accuracy of 95.66%, a recall of 95.33%, and an F1 score of over 60 epochs within 1000 seconds. These results go beyond traditional CNN, R-CNN, and custom inception classifiers, indicating superior speed and robustness in histological image classification. Therefore, SCNN offers a practical and scalable solution to improve lung cancer awareness in clinical practice.

摘要

肺癌是全球癌症相关死亡的最常见原因,早期检测对于提高生存率极为重要。根据国立卫生科学研究所的数据,肺癌的癌症死亡率最高。医学专业人员通常基于MRI、X射线、活检、超声和CT扫描等临床成像方法。然而,这些成像技术常常面临包括假阳性、假阴性和灵敏度等挑战。深度学习方法,特别是卷积神经网络(CNNs),因其能够解决这些问题而出现。然而,传统的CNN模型在实际临床数据中常常存在计算复杂度高、推理时间长和过度适配等问题。为了克服这些限制,我们提出了一种优化的序列卷积网络(SCNN),它能保持较高的分类准确率,同时减少处理时间和计算负荷。SCNN模型由三个卷积层、三个最大池化层、展平层和全连接层组成,能够实现高效且准确的分类。在组织学成像数据集中,肺癌模型的三类分别是腺癌、良性和鳞状细胞癌。我们的SCNN在1000秒内经过60多个轮次训练后,平均准确率达到95.34%,精确率达到95.66%,召回率达到95.33%,F1分数超过[此处原文未明确具体数值]。这些结果超越了传统的CNN、R-CNN和自定义的Inception分类器,表明在组织学图像分类中具有卓越的速度和稳健性。因此,SCNN为在临床实践中提高肺癌诊断水平提供了一种实用且可扩展的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc3d/12402237/a53ec1bf9ebd/41598_2025_6653_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验