Suppr超能文献

连续血糖监测传感器数据的数据缺口建模。

Data Gap Modeling in Continuous Glucose Monitoring Sensor Data.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4379-4382. doi: 10.1109/EMBC46164.2021.9629588.

Abstract

Continuous glucose monitoring (CGM) sensors are minimally-invasive sensors used in diabetes therapy to monitor interstitial glucose concentration. The measurements are collected almost continuously (e.g. every 5 min) and permit the detection of dangerous hypo/hyperglycemic episodes. Modeling the various error components affecting CGM sensors is very important (e.g., to generate realistic scenarios for developing and testing CGM-based applications in type 1 diabetes simulators). In this work we focus on data gaps, which are portions of missing data due to a disconnection or a temporary sensor error. A dataset of 167 adults monitored with the Dexcom (San Diego, CA) G6 sensor is considered. After the evaluation of some statistics (the number of gaps for each sensor, the gap distribution over the monitoring days and the data gap durations), we develop a two-state Markov model to describe such statistics about data gap occurrence. Statistics about data gaps are compared between real data and simulated data generated by the model with a Monte Carlo simulation. Results show that the model describes quite accurately the occurrence and the duration of data gaps observed in real data.

摘要

连续血糖监测(CGM)传感器是一种用于糖尿病治疗的微创传感器,用于监测间质葡萄糖浓度。测量结果几乎连续采集(例如每 5 分钟一次),可以检测到危险的低血糖/高血糖发作。对影响 CGM 传感器的各种误差分量进行建模非常重要(例如,为在 1 型糖尿病模拟器中开发和测试基于 CGM 的应用程序生成现实场景)。在这项工作中,我们专注于数据空白,这是由于断开连接或传感器暂时出现错误而导致的数据缺失部分。考虑了一个由 167 名成年人使用 Dexcom(圣地亚哥,CA)G6 传感器监测的数据。在评估了一些统计数据(每个传感器的空白次数、监测天数内的空白分布以及数据空白持续时间)之后,我们开发了一个两状态马尔可夫模型来描述有关数据空白发生的此类统计信息。使用蒙特卡罗模拟,将真实数据和通过模型生成的模拟数据之间的关于数据空白的统计数据进行比较。结果表明,该模型相当准确地描述了真实数据中观察到的数据空白的发生和持续时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验