Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:5796-5799. doi: 10.1109/EMBC46164.2021.9630048.
Stimulus-driven brain-computer interfaces (BCIs), such as the P300 speller, rely on using sensory stimuli to elicit specific neural signal components called event-related potentials (ERPs) to control external devices. However, psychophysical factors, such as refractory effects and adjacency distractions, may negatively impact ERP elicitation and BCI performance. Although conventional BCI stimulus presentation paradigms usually design stimulus presentation schedules in a pseudo-random manner, recent studies have shown that controlling the stimulus selection process can enhance ERP elicitation. In prior work, we developed an algorithm to adaptively select BCI stimuli using an objective criterion that maximizes the amount of information about the user's intent that can be elicited with the presented stimuli given current data conditions. Here, we enhance this adaptive BCI stimulus selection algorithm to mitigate adjacency distractions and refractory effects by modeling temporal dependencies of ERP elicitation in the objective function and imposing spatial restrictions in the stimulus search space. Results from simulations using synthetic data and human data from a BCI study show that the enhanced adaptive stimulus selection algorithm can improve spelling speeds relative to conventional BCI stimulus presentation paradigms.Clinical relevance-Increased communication rates with our enhanced adaptive stimulus selection algorithm can potentially facilitate the translation of BCIs as viable communication alternatives for individuals with severe neuromuscular limitations.
刺激驱动的脑机接口(BCI),如 P300 拼写器,依赖于使用感官刺激来引出特定的神经信号成分,称为事件相关电位(ERP),以控制外部设备。然而,心理物理因素,如不应期效应和相邻干扰,可能会对 ERP 引出和 BCI 性能产生负面影响。尽管传统的 BCI 刺激呈现范式通常以伪随机方式设计刺激呈现计划,但最近的研究表明,控制刺激选择过程可以增强 ERP 引出。在之前的工作中,我们开发了一种使用客观标准自适应选择 BCI 刺激的算法,该标准最大限度地提高了可以用呈现的刺激引出的关于用户意图的信息量,给定当前数据条件。在这里,我们通过在目标函数中对 ERP 引出的时间依赖性进行建模,并在刺激搜索空间中施加空间限制,来增强这种自适应 BCI 刺激选择算法,以减轻相邻干扰和不应期效应。使用合成数据和 BCI 研究中的人类数据进行的模拟结果表明,增强的自适应刺激选择算法可以提高拼写速度,相对于传统的 BCI 刺激呈现范式。临床相关性-我们增强的自适应刺激选择算法可以提高通信率,从而有可能将 BCI 作为严重神经肌肉受限个体的可行通信替代方案进行转化。