Suppr超能文献

负荷和恢复中的非遍历性:群体结果不能推广到个体。

Nonergodicity in Load and Recovery: Group Results Do Not Generalize to Individuals.

出版信息

Int J Sports Physiol Perform. 2022 Mar 1;17(3):391-399. doi: 10.1123/ijspp.2021-0126. Epub 2021 Dec 11.

Abstract

PURPOSE

The study of load and recovery gained significant interest in the last decades, given its important value in decreasing the likelihood of injuries and improving performance. So far, findings are typically reported on the group level, whereas practitioners are most often interested in applications at the individual level. Hence, the aim of the present research is to examine to what extent group-level statistics can be generalized to individual athletes, which is referred to as the "ergodicity issue." Nonergodicity may have serious consequences for the way we should analyze, and work with, load and recovery measures in the sports field.

METHODS

The authors collected load, that is, rating of perceived exertion × training duration, and total quality of recovery data among youth male players of a professional football club. This data were collected daily across 2 seasons and analyzed on both the group and the individual level.

RESULTS

Group- and individual-level analysis resulted in different statistical outcomes, particularly with regard to load. Specifically, SDs within individuals were up to 7.63 times larger than SDs between individuals. In addition, at either level, the authors observed different correlations between load and recovery.

CONCLUSIONS

The results suggest that the process of load and recovery in athletes is nonergodic, which has important implications for the sports field. Recommendations for training programs of individual athletes may be suboptimal, or even erroneous, when guided by group-level outcomes. The utilization of individual-level analysis is key to ensure the optimal balance of individual load and recovery.

摘要

目的

在过去几十年中,由于负荷和恢复对降低受伤风险和提高表现具有重要价值,因此对其的研究引起了广泛关注。到目前为止,研究结果通常是在群体层面上报告的,而从业者最感兴趣的通常是个体层面上的应用。因此,本研究的目的是检验群体层面的统计数据在多大程度上可以推广到个体运动员,这被称为“遍历性问题”。非遍历性可能会对我们在体育领域分析和处理负荷和恢复测量的方式产生严重后果。

方法

作者收集了一家职业足球俱乐部的青年男性运动员的负荷(即感知用力评分×训练持续时间)和总恢复质量数据。这些数据在两个赛季中每天进行收集,并在群体和个体层面上进行分析。

结果

群体和个体水平的分析得出了不同的统计结果,特别是在负荷方面。具体而言,个体内部的标准差最大可达个体之间标准差的 7.63 倍。此外,在任何一个层面上,作者都观察到了负荷和恢复之间的不同相关性。

结论

结果表明,运动员的负荷和恢复过程是非遍历的,这对体育领域具有重要意义。当以群体层面的结果为指导时,个体运动员的训练计划的推荐可能是次优的,甚至是错误的。利用个体层面的分析是确保个体负荷和恢复之间达到最佳平衡的关键。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验