Suppr超能文献

为何谦逊的农民实际上可能种出更大的土豆:呼吁在体育领域做出明智决策。

Why Humble Farmers May in Fact Grow Bigger Potatoes: A Call for Street-Smart Decision-Making in Sport.

作者信息

Hecksteden Anne, Keller Niklas, Zhang Guangze, Meyer Tim, Hauser Thomas

机构信息

Chair of Sports Medicine, Institute of Sport Science, Universität Innsbruck, Innsbruck, Austria.

Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria.

出版信息

Sports Med Open. 2023 Oct 14;9(1):94. doi: 10.1186/s40798-023-00641-0.

Abstract

BACKGROUND

The main task of applied sport science is to inform decision-making in sports practice, that is, enabling practitioners to compare the expectable outcomes of different options (e.g. training programs).

MAIN BODY

The "evidence" provided may range from group averages to multivariable prediction models. By contrast, many decisions are still largely based on the subjective, experience-based judgement of athletes and coaches. While for the research scientist this may seem "unscientific" and even "irrational", it is important to realize the different perspectives: science values novelty, universal validity, methodological rigor, and contributions towards long-term advancement. Practitioners are judged by the performance outcomes of contemporary, specific athletes. This makes out-of-sample predictive accuracy and robustness decisive requirements for useful decision support. At this point, researchers must concede that under the framework conditions of sport (small samples, multifactorial outcomes etc.) near certainty is unattainable, even with cutting-edge methods that might theoretically enable near-perfect accuracy. Rather, the sport ecosystem favors simpler rules, learning by experience, human judgement, and integration across different sources of knowledge. In other words, the focus of practitioners on experience and human judgement, complemented-but not superseded-by scientific evidence is probably street-smart after all. A major downside of this human-driven approach is the lack of science-grade evaluation and transparency. However, methods are available to merge the assets of data- and human-driven strategies and mitigate biases.

SHORT CONCLUSION

This work presents the challenges of learning, forecasting and decision-making in sport as well as specific opportunities for turning the prevailing "evidence vs. eminence" contrast into a synergy.

摘要

背景

应用运动科学的主要任务是为体育实践中的决策提供信息,即让从业者能够比较不同选项(如训练计划)的预期结果。

主体内容

所提供的“证据”范围可能从群体平均值到多变量预测模型。相比之下,许多决策在很大程度上仍然基于运动员和教练的主观的、基于经验的判断。虽然对于科研人员来说,这可能看起来“不科学”甚至“不合理”,但重要的是要认识到不同的视角:科学重视新颖性、普遍有效性、方法的严谨性以及对长期进步的贡献。从业者则以当代特定运动员的表现结果来评判。这使得样本外预测准确性和稳健性成为有用决策支持的决定性要求。在这一点上,研究人员必须承认,在体育的框架条件下(小样本、多因素结果等),即使使用理论上可能实现近乎完美准确性的前沿方法,也无法达到近乎确定性。相反,体育生态系统更倾向于更简单的规则、经验学习、人类判断以及不同知识来源的整合。换句话说,从业者对经验和人类判断的关注,辅之以——但不被——科学证据所取代,可能终究是明智之举。这种人为驱动方法的一个主要缺点是缺乏科学级别的评估和透明度。然而,有方法可以融合数据驱动和人为驱动策略的优势并减轻偏差。

简短结论

这项工作展示了体育中学习、预测和决策的挑战,以及将当前“证据与卓越”的对比转化为协同作用的具体机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e9e/10576693/81fcd94fae12/40798_2023_641_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验