Suppr超能文献

调查超过 100 个蛋白质内无序性的预测因子。

Surveying over 100 predictors of intrinsic disorder in proteins.

机构信息

Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA.

出版信息

Expert Rev Proteomics. 2021 Dec;18(12):1019-1029. doi: 10.1080/14789450.2021.2018304. Epub 2021 Dec 28.

Abstract

INTRODUCTION

Intrinsic disorder prediction field develops, assesses, and deploys computational predictors of disorder in protein sequences and constructs and disseminates databases of these predictions. Over 40 years of research resulted in the release of numerous resources.

AREAS COVERED

We identify and briefly summarize the most comprehensive to date collection of over 100 disorder predictors. We focus on their predictive models, availability and predictive performance. We categorize and study them from a historical point of view to highlight informative trends.

EXPERT OPINION

We find a consistent trend of improvements in predictive quality as newer and more advanced predictors are developed. The original focus on machine learning methods has shifted to meta-predictors in early 2010s, followed by a recent transition to deep learning. The use of deep learners will continue in foreseeable future given recent and convincing success of these methods. Moreover, a broad range of resources that facilitate convenient collection of accurate disorder predictions is available to users. They include web servers and standalone programs for disorder prediction, servers that combine prediction of disorder and disorder functions, and large databases of pre-computed predictions. We also point to the need to address the shortage of accurate methods that predict disordered binding regions.

摘要

简介

固有无序预测领域开发、评估和部署蛋白质序列中无序的计算预测因子,并构建和传播这些预测因子的数据库。经过 40 多年的研究,产生了许多资源。

涵盖领域

我们确定并简要总结了目前最全面的 100 多种无序预测因子集合。我们专注于它们的预测模型、可用性和预测性能。我们从历史角度对它们进行分类和研究,以突出有意义的趋势。

专家意见

我们发现,随着新的、更先进的预测因子的开发,预测质量的改进趋势是一致的。最初对机器学习方法的关注在 21 世纪 10 年代初转向了元预测因子,随后最近又转向了深度学习。鉴于这些方法最近取得了令人信服的成功,预计在可预见的未来,深度学习的应用将继续。此外,还为用户提供了广泛的资源,方便准确地收集无序预测,其中包括无序预测和无序功能组合的预测服务器,以及预先计算预测的大型数据库。我们还指出需要解决缺乏准确预测无序结合区域的方法这一问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验