Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States.
Methods. 2022 Aug;204:132-141. doi: 10.1016/j.ymeth.2022.03.018. Epub 2022 Mar 31.
With over 40 years of research, researchers in the intrinsic disorder prediction field developed over 100 computational predictors. This review offers a holistic perspective of this field by highlighting accurate and popular disorder predictors and introducing a wide range of practical resources that support collection, interpretation and application of disorder predictions. These resources include meta webservers that expedite collection of multiple disorder predictions, large databases of pre-computed disorder predictions that ease collection of predictions particularly for large datasets of proteins, and modern quality assessment tools. The latter methods facilitate identification of accurate predictions in a specific protein sequence, reducing uncertainty associated to the use of the putative disorder. Altogether, we review eleven predictors, four meta webservers, three databases and two quality assessment tools, all of which are conveniently available online. We also offer a perspective on future developments of the disorder prediction and the quality assessment tools. The availability of this comprehensive toolbox of useful resources should stimulate further growth in the application of the disorder predictions across many areas including rational drug design, systems medicine, structural bioinformatics and structural genomics.
经过 40 多年的研究,内在无序预测领域的研究人员开发了 100 多种计算预测器。本综述通过突出准确和流行的无序预测器,并介绍广泛的实用资源,为该领域提供了全面的视角,这些资源支持无序预测的收集、解释和应用。这些资源包括元网络服务器,可加速多个无序预测的收集;大型预先计算无序预测数据库,可简化特别是大型蛋白质数据集预测的收集;以及现代质量评估工具。后者方法有助于在特定蛋白质序列中识别准确的预测,减少与使用假定无序相关的不确定性。总之,我们综述了 11 个预测器、4 个元网络服务器、3 个数据库和 2 个质量评估工具,所有这些都方便地在线提供。我们还对无序预测和质量评估工具的未来发展进行了展望。这个全面的有用资源工具箱的可用性,应该会刺激无序预测在包括合理药物设计、系统医学、结构生物信息学和结构基因组学在内的许多领域的进一步应用。