Suppr超能文献

OmicsOne:一键将组学数据与表型关联起来。

OmicsOne: associate omics data with phenotypes in one-click.

作者信息

Zhang Hui, Ao Minghui, Boja Arianna, Schnaubelt Michael, Hu Yingwei

机构信息

School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.

Mount Hebron High School, Ellicott City, MD, 21042, USA.

出版信息

Clin Proteomics. 2021 Dec 11;18(1):29. doi: 10.1186/s12014-021-09334-w.

Abstract

BACKGROUND

The rapid advancements of high throughput "omics" technologies have brought a massive amount of data to process during and after experiments. Multi-omic analysis facilitates a deeper interrogation of a dataset and the discovery of interesting genes, proteins, lipids, glycans, metabolites, or pathways related to the corresponding phenotypes in a study. Many individual software tools have been developed for data analysis and visualization. However, it still lacks an efficient way to investigate the phenotypes with multiple omics data. Here, we present OmicsOne as an interactive web-based framework for rapid phenotype association analysis of multi-omic data by integrating quality control, statistical analysis, and interactive data visualization on 'one-click'.

MATERIALS AND METHODS

OmicsOne was applied on the previously published proteomic and glycoproteomic data sets of high-grade serous ovarian carcinoma (HGSOC) and the published proteome data set of lung squamous cell carcinoma (LSCC) to confirm its performance. The data was analyzed through six main functional modules implemented in OmicsOne: (1) phenotype profiling, (2) data preprocessing and quality control, (3) knowledge annotation, (4) phenotype associated features discovery, (5) correlation and regression model analysis for phenotype association analysis on individual features, and (6) enrichment analysis for phenotype association analysis on interested feature sets.

RESULTS

We developed an integrated software solution, OmicsOne, for the phenotype association analysis on multi-omics data sets. The application of OmicsOne on the public data set of ovarian cancer data showed that the software could confirm the previous observations consistently and discover new evidence for HNRNPU and a glycopeptide of HYOU1 as potential biomarkers for HGSOC data sets. The performance of OmicsOne was further demonstrated in the Tumor and NAT comparison study on the proteome data set of LSCC.

CONCLUSIONS

OmicsOne can effectively simplify data analysis and reveal the significant associations between phenotypes and potential biomarkers, including genes, proteins, and glycopeptides, in minutes to assist users to understand aberrant biological processes.

摘要

背景

高通量“组学”技术的快速发展在实验期间及之后带来了大量需要处理的数据。多组学分析有助于更深入地探究数据集,并发现与研究中相应表型相关的有趣基因、蛋白质、脂质、聚糖、代谢物或通路。已经开发了许多单独的软件工具用于数据分析和可视化。然而,仍然缺乏一种利用多组学数据研究表型的有效方法。在此,我们展示了OmicsOne,这是一个基于网络的交互式框架,通过一键集成质量控制、统计分析和交互式数据可视化,对多组学数据进行快速表型关联分析。

材料与方法

将OmicsOne应用于先前发表的高级别浆液性卵巢癌(HGSOC)的蛋白质组和糖蛋白质组数据集以及已发表的肺鳞状细胞癌(LSCC)蛋白质组数据集,以确认其性能。通过OmicsOne中实现的六个主要功能模块对数据进行分析:(1)表型分析,(2)数据预处理和质量控制,(3)知识注释,(4)表型相关特征发现,(5)对单个特征进行表型关联分析的相关性和回归模型分析,以及(6)对感兴趣的特征集进行表型关联分析的富集分析。

结果

我们开发了一种集成软件解决方案OmicsOne,用于对多组学数据集进行表型关联分析。OmicsOne在卵巢癌公共数据集上的应用表明,该软件能够一致地证实先前的观察结果,并发现HNRNPU和HYOU1的一种糖肽作为HGSOC数据集潜在生物标志物的新证据。OmicsOne的性能在LSCC蛋白质组数据集的肿瘤与正常组织比较研究中得到进一步证明。

结论

OmicsOne可以有效简化数据分析,并在几分钟内揭示表型与潜在生物标志物(包括基因、蛋白质和糖肽)之间的显著关联,以帮助用户理解异常生物学过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428d/8903648/fd098ad1c8a0/12014_2021_9334_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验