Suppr超能文献

基于规则的工作流程自动化,使用堆叠深度学习从婴儿和儿童的脑部 MRI 图像估算年龄,年龄范围为 2 岁以下。

Automation of a Rule-based Workflow to Estimate Age from Brain MR Imaging of Infants and Children Up to 2 Years Old Using Stacked Deep Learning.

机构信息

Department of Radiology, Juntendo University School of Medicine.

出版信息

Magn Reson Med Sci. 2023 Jan 1;22(1):57-66. doi: 10.2463/mrms.mp.2021-0068. Epub 2021 Dec 10.

Abstract

PURPOSE

Myelination-related MR signal changes in white matter are helpful for assessing normal development in infants and children. A rule-based myelination evaluation workflow regarding signal changes on T1-weighted images (T1WIs) and T2-weighted images (T2WIs) has been widely used in radiology. This study aimed to simulate a rule-based workflow using a stacked deep learning model and evaluate age estimation accuracy.

METHODS

The age estimation system involved two stacked neural networks: a target network-to extract five myelination-related images from the whole brain, and an age estimation network from extracted T1- and T2WIs separately. A dataset was constructed from 119 children aged below 2 years with two MRI systems. A four-fold cross-validation method was adopted. The correlation coefficient (CC), mean absolute error (MAE), and root mean squared error (RMSE) of the corrected chronological age of full-term birth, as well as the mean difference and the upper and lower limits of 95% agreement, were measured. Generalization performance was assessed using datasets acquired from different MR images. Age estimation was performed in Sturge-Weber syndrome (SWS) cases.

RESULTS

There was a strong correlation between estimated age and corrected chronological age (MAE: 0.98 months; RMSE: 1.27 months; and CC: 0.99). The mean difference and standard deviation (SD) were -0.15 and 1.26, respectively, and the upper and lower limits of 95% agreement were 2.33 and -2.63 months. Regarding generalization performance, the performance values on the external dataset were MAE of 1.85 months, RMSE of 2.59 months, and CC of 0.93. Among 13 SWS cases, 7 exceeded the limits of 95% agreement, and a proportional bias of age estimation based on myelination acceleration was exhibited below 12 months of age (P = 0.03).

CONCLUSION

Stacked deep learning models automated the rule-based workflow in radiology and achieved highly accurate age estimation in infants and children up to 2 years of age.

摘要

目的

脑白质髓鞘形成相关的 MR 信号变化有助于评估婴儿和儿童的正常发育。基于规则的髓鞘评估工作流程已广泛应用于影像学中,该流程涉及 T1 加权图像(T1WI)和 T2 加权图像(T2WI)上的信号变化。本研究旨在使用堆叠深度学习模型模拟基于规则的工作流程,并评估年龄估计的准确性。

方法

年龄估计系统涉及两个堆叠神经网络:目标网络——从全脑提取五个髓鞘形成相关图像,以及分别从提取的 T1 和 T2WI 中提取年龄估计网络。使用来自两个 MRI 系统的 119 名年龄在 2 岁以下的儿童构建了一个数据集。采用四折交叉验证方法。测量全期出生时校正后的实际年龄的相关系数(CC)、平均绝对误差(MAE)和均方根误差(RMSE),以及平均差值和 95%一致性的上下限。使用来自不同 MRI 图像的数据集评估泛化性能。对斯特奇-韦伯综合征(SWS)病例进行年龄估计。

结果

估计年龄与校正后的实际年龄具有很强的相关性(MAE:0.98 个月;RMSE:1.27 个月;CC:0.99)。平均差值和标准差(SD)分别为-0.15 和 1.26,95%一致性的上下限分别为 2.33 和-2.63 个月。关于泛化性能,外部数据集的性能值为 MAE 为 1.85 个月,RMSE 为 2.59 个月,CC 为 0.93。在 13 例 SWS 病例中,有 7 例超出了 95%一致性的上限,并且在 12 个月以下的年龄表现出基于髓鞘加速的年龄估计的比例偏差(P = 0.03)。

结论

堆叠深度学习模型自动化了放射科基于规则的工作流程,并在 2 岁以下的婴儿和儿童中实现了高度准确的年龄估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c62/9849414/5bb10dabd562/mrms-22-57-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验