Suppr超能文献

基于深度学习利用常规脑部磁共振成像预测儿童脑龄

Brain Age Prediction of Children Using Routine Brain MR Images via Deep Learning.

作者信息

Hong Jin, Feng Zhangzhi, Wang Shui-Hua, Peet Andrew, Zhang Yu-Dong, Sun Yu, Yang Ming

机构信息

School of Informatics, University of Leicester, Leicester, United Kingdom.

Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, China.

出版信息

Front Neurol. 2020 Oct 19;11:584682. doi: 10.3389/fneur.2020.584682. eCollection 2020.

Abstract

Predicting brain age of children accurately and quantitatively can give help in brain development analysis and brain disease diagnosis. Traditional methods to estimate brain age based on 3D magnetic resonance (MR), T1 weighted imaging (T1WI), and diffusion tensor imaging (DTI) need complex preprocessing and extra scanning time, decreasing clinical practice, especially in children. This research aims at proposing an end-to-end AI system based on deep learning to predict the brain age based on routine brain MR imaging. We spent over 5 years enrolling 220 stacked 2D routine clinical brain MR T1-weighted images of healthy children aged 0 to 5 years old and randomly divided those images into training data including 176 subjects and test data including 44 subjects. Data augmentation technology, which includes scaling, image rotation, translation, and gamma correction, was employed to extend the training data. A 10-layer 3D convolutional neural network (CNN) was designed for predicting the brain age of children and it achieved reliable and accurate results on test data with a mean absolute deviation (MAE) of 67.6 days, a root mean squared error (RMSE) of 96.1 days, a mean relative error (MRE) of 8.2%, a correlation coefficient () of 0.985, and a coefficient of determination ( ) of 0.971. Specially, the performance on predicting the age of children under 2 years old with a MAE of 28.9 days, a RMSE of 37.0 days, a MRE of 7.8%, a of 0.983, and a of 0.967 is much better than that over 2 with a MAE of 110.0 days, a RMSE of 133.5 days, a MRE of 8.2%, a of 0.883, and a of 0.780.

摘要

准确且定量地预测儿童脑龄有助于脑发育分析和脑部疾病诊断。基于三维磁共振成像(MR)、T1加权成像(T1WI)和扩散张量成像(DTI)来估计脑龄的传统方法需要复杂的预处理和额外的扫描时间,这降低了其在临床实践中的应用,尤其是在儿童群体中。本研究旨在提出一种基于深度学习的端到端人工智能系统,用于根据常规脑部MR成像预测脑龄。我们花费了5年多的时间,收集了220例0至5岁健康儿童的堆叠二维常规临床脑部MR T1加权图像,并将这些图像随机分为包含176名受试者的训练数据和包含44名受试者的测试数据。采用包括缩放、图像旋转、平移和伽马校正在内的数据增强技术来扩充训练数据。设计了一个10层的三维卷积神经网络(CNN)来预测儿童脑龄,该网络在测试数据上取得了可靠且准确的结果,平均绝对偏差(MAE)为67.6天,均方根误差(RMSE)为96.1天,平均相对误差(MRE)为8.2%,相关系数()为0.985,决定系数()为0.971。特别地,在预测2岁以下儿童年龄时,其MAE为28.9天,RMSE为37.0天,MRE为7.8%,为0.983,为0.967,性能远优于预测2岁以上儿童,其MAE为110.0天,RMSE为133.5天,MRE为8.2%为0.883,为0.780。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ad/7604456/da42190d2451/fneur-11-584682-g0001.jpg

相似文献

1
Brain Age Prediction of Children Using Routine Brain MR Images via Deep Learning.
Front Neurol. 2020 Oct 19;11:584682. doi: 10.3389/fneur.2020.584682. eCollection 2020.
4
Deep learning-based convolutional neural network for intramodality brain MRI synthesis.
J Appl Clin Med Phys. 2022 Apr;23(4):e13530. doi: 10.1002/acm2.13530. Epub 2022 Jan 19.
5
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.
Cancer Biomark. 2025 Mar;42(3):18758592241311184. doi: 10.1177/18758592241311184. Epub 2025 Apr 4.
6
MR-based synthetic CT generation using a deep convolutional neural network method.
Med Phys. 2017 Apr;44(4):1408-1419. doi: 10.1002/mp.12155. Epub 2017 Mar 21.
7
Deep convolutional neural network and IoT technology for healthcare.
Digit Health. 2024 Jan 17;10:20552076231220123. doi: 10.1177/20552076231220123. eCollection 2024 Jan-Dec.
8
Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network.
Med Phys. 2019 Jul;46(7):3101-3116. doi: 10.1002/mp.13555. Epub 2019 May 11.
9
Age estimates from brain magnetic resonance images of children younger than two years of age using deep learning.
Magn Reson Imaging. 2021 Jun;79:38-44. doi: 10.1016/j.mri.2021.03.004. Epub 2021 Mar 12.
10
AI-driven attenuation correction for brain PET/MRI: Clinical evaluation of a dementia cohort and importance of the training group size.
Neuroimage. 2020 Nov 15;222:117221. doi: 10.1016/j.neuroimage.2020.117221. Epub 2020 Aug 1.

引用本文的文献

2
Diffusion deep learning for brain age prediction and longitudinal tracking in children through adulthood.
Imaging Neurosci (Camb). 2024 Mar 25;2. doi: 10.1162/imag_a_00114. eCollection 2024.
3
A novel deep learning-based brain age prediction framework for routine clinical MRI scans.
NPJ Aging. 2025 Jul 29;11(1):70. doi: 10.1038/s41514-025-00260-x.
4
MSLI-Net: retinal disease detection network based on multi-segment localization and multi-scale interaction.
Front Cell Dev Biol. 2025 Jun 6;13:1608325. doi: 10.3389/fcell.2025.1608325. eCollection 2025.
5
Redefining diagnostic lesional status in temporal lobe epilepsy with artificial intelligence.
Brain. 2025 Jun 3;148(6):2189-2200. doi: 10.1093/brain/awaf020.
6
EEG-based brain age prediction in infants-toddlers: Implications for early detection of neurodevelopmental disorders.
Dev Cogn Neurosci. 2025 Jan;71:101493. doi: 10.1016/j.dcn.2024.101493. Epub 2024 Dec 18.
7
Adding the third dimension: 3D convolutional neural network diagnosis of temporal lobe epilepsy.
Brain Commun. 2024 Oct 10;6(5):fcae346. doi: 10.1093/braincomms/fcae346. eCollection 2024.
8
Prediction of chronological age from resting-state EEG power in the first three years of life.
medRxiv. 2024 Jun 1:2024.05.31.24308275. doi: 10.1101/2024.05.31.24308275.

本文引用的文献

1
Gray Matter Age Prediction as a Biomarker for Risk of Dementia.
Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):21213-21218. doi: 10.1073/pnas.1902376116. Epub 2019 Oct 1.
2
Age Prediction Based on Brain MRI Image: A Survey.
J Med Syst. 2019 Jul 11;43(8):279. doi: 10.1007/s10916-019-1401-7.
3
Investigating systematic bias in brain age estimation with application to post-traumatic stress disorders.
Hum Brain Mapp. 2019 Aug 1;40(11):3143-3152. doi: 10.1002/hbm.24588. Epub 2019 Mar 28.
4
Hierarchical Rough-to-Fine Model for Infant Age Prediction Based on Cortical Features.
IEEE J Biomed Health Inform. 2020 Jan;24(1):214-225. doi: 10.1109/JBHI.2019.2897020. Epub 2019 Feb 1.
5
Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs.
Comput Biol Med. 2018 Dec 1;103:220-231. doi: 10.1016/j.compbiomed.2018.10.011. Epub 2018 Oct 12.
8
Bayesian Optimization for Neuroimaging Pre-processing in Brain Age Classification and Prediction.
Front Aging Neurosci. 2018 Feb 12;10:28. doi: 10.3389/fnagi.2018.00028. eCollection 2018.
9
A spatio-temporal reference model of the aging brain.
Neuroimage. 2018 Apr 1;169:11-22. doi: 10.1016/j.neuroimage.2017.10.040. Epub 2017 Dec 5.
10
Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images.
J Healthc Eng. 2017;2017:8314740. doi: 10.1155/2017/8314740. Epub 2017 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验