Graduate School of Engineering, The University of Tokyo.
Proc Jpn Acad Ser B Phys Biol Sci. 2021;97(10):559-572. doi: 10.2183/pjab.97.028.
Mammalian neurons are highly compartmentalized yet very large cells. To provide each compartment with its distinct properties, metabolic homeostasis and molecular composition need to be precisely coordinated in a compartment-specific manner. Despite the importance of the endoplasmic reticulum (ER) as a platform for various biochemical reactions, such as protein synthesis, protein trafficking, and intracellular calcium control, the contribution of the ER to neuronal compartment-specific functions and plasticity remains elusive. Recent advances in the development of live imaging and serial scanning electron microscopy (sSEM) analysis have revealed that the neuronal ER is a highly dynamic organelle with compartment-specific structures. sSEM studies also revealed that the ER forms contacts with other membranes, such as the mitochondria and plasma membrane, although little is known about the functions of these ER-membrane contacts. In this review, we discuss the mechanisms and physiological roles of the ER structure and ER-mitochondria contacts in synaptic transmission and plasticity, thereby highlighting a potential link between organelle ultrastructure and neuronal functions.
哺乳动物神经元是高度分隔的大型细胞。为了为每个隔室提供其独特的特性,代谢平衡和分子组成需要以隔室特异性的方式精确协调。尽管内质网 (ER) 作为各种生化反应(如蛋白质合成、蛋白质运输和细胞内钙控制)的平台非常重要,但 ER 对神经元隔室特异性功能和可塑性的贡献仍然难以捉摸。活细胞成像和连续扫描电子显微镜 (sSEM) 分析的最新进展揭示了神经元 ER 是一种具有隔室特异性结构的高度动态细胞器。sSEM 研究还表明,ER 与其他膜(如线粒体和质膜)形成接触,尽管对这些 ER-膜接触的功能知之甚少。在这篇综述中,我们讨论了 ER 结构和 ER-线粒体接触在突触传递和可塑性中的机制和生理作用,从而强调了细胞器超微结构和神经元功能之间的潜在联系。