Suppr超能文献

纤毛皮层组织与细胞运动动力学:纤毛动物与脊椎动物的比较。

Ciliate cortical organization and dynamics for cell motility: Comparing ciliates and vertebrates.

机构信息

Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.

出版信息

J Eukaryot Microbiol. 2022 Sep;69(5):e12880. doi: 10.1111/jeu.12880. Epub 2022 Jan 12.

Abstract

The generation of efficient fluid flow is crucial for organismal development and homeostasis, sexual reproduction, and motility. Multi-ciliated cells possess fields of motile cilia that beat in synchrony to propel fluid. Ciliary arrays are remarkably conserved in their organization and function. Ciliates have polarized multi-ciliary arrays (MCAs) to promote fluid flow for cell motility. The ciliate cortex is decorated with hundreds of basal bodies (BB) forming linear rows along the cell's anterior-posterior axis. BBs scaffold and position cilia to form the organized ciliary array. Nascent BBs assemble at the base of BBs. As nascent BBs mature, they integrate into the cortical BB and cytoskeletal network and nucleate their own cilium. The organization of MCAs is balanced between cortical stability and cortical dynamism. The cortical cytoskeletal network both establishes and maintains a stable organization of the MCA in the face of mechanical forces exerted by ciliary beating. At the same time, MCA organization is plastic, such that it remodels for optimal ciliary mobility during development and in response to environmental conditions. Such plasticity promotes effective feeding and ecological behavior required for these organisms. Together, these properties allow an organism to effectively sense, adapt to, and move through its environment.

摘要

有效的流体流动的产生对于生物体的发育和内稳态、有性生殖和运动性至关重要。多纤毛细胞具有运动纤毛的场域,这些纤毛同步地拍打以推动流体。纤毛阵列在其组织和功能上具有显著的保守性。纤毛虫具有极化的多纤毛阵列(MCA),以促进细胞运动的流体流动。纤毛虫皮层上装饰着数百个基体(BB),这些基体沿着细胞的前后轴形成线性排列。BB 支架和定位纤毛,形成有组织的纤毛阵列。新生的 BB 组装在 BB 的底部。随着新生 BB 的成熟,它们整合到皮质 BB 和细胞骨架网络中,并为自己的纤毛提供核。MCA 的组织在皮质稳定性和皮质动态之间保持平衡。皮质细胞骨架网络在面对纤毛拍打产生的机械力时,既建立又维持 MCA 的稳定组织。同时,MCA 组织具有可塑性,因此在发育过程中以及响应环境条件时,它可以进行最佳的纤毛运动重塑。这种可塑性促进了这些生物体所需的有效进食和生态行为。这些特性使生物体能够有效地感知、适应和在其环境中移动。

相似文献

1
Ciliate cortical organization and dynamics for cell motility: Comparing ciliates and vertebrates.
J Eukaryot Microbiol. 2022 Sep;69(5):e12880. doi: 10.1111/jeu.12880. Epub 2022 Jan 12.
2
Intracellular connections between basal bodies promote the coordinated behavior of motile cilia.
Mol Biol Cell. 2022 Sep 15;33(11):br18. doi: 10.1091/mbc.E22-05-0150. Epub 2022 Jun 29.
4
Microtubule glycylation promotes attachment of basal bodies to the cell cortex.
J Cell Sci. 2019 Aug 7;132(15):jcs233726. doi: 10.1242/jcs.233726.
5
Basal body organization and cell geometry during the cell cycle in .
Mol Biol Cell. 2023 May 15;34(6):ar53. doi: 10.1091/mbc.E22-11-0508. Epub 2023 Jan 11.
6
Tetrahymena basal bodies.
Cilia. 2016 Jan 19;5:1. doi: 10.1186/s13630-016-0022-8. eCollection 2015.
7
Basal bodies bend in response to ciliary forces.
Mol Biol Cell. 2022 Dec 1;33(14):ar146. doi: 10.1091/mbc.E22-10-0468-T. Epub 2022 Oct 26.
8
Reorganization of complex ciliary flows around regenerating .
Philos Trans R Soc Lond B Biol Sci. 2020 Feb 17;375(1792):20190167. doi: 10.1098/rstb.2019.0167. Epub 2019 Dec 30.
9
Simple mechanosense and response of cilia motion reveal the intrinsic habits of ciliates.
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):3231-3236. doi: 10.1073/pnas.1718294115. Epub 2018 Mar 12.

引用本文的文献

1
Fourier synthesis optical diffraction tomography for kilohertz rate volumetric imaging.
Sci Adv. 2025 Aug 15;11(33):eadr8004. doi: 10.1126/sciadv.adr8004. Epub 2025 Aug 13.
2
The function of the ATG8 in the cilia and cortical microtubule maintenance of Euplotes amieti.
Protoplasma. 2024 Nov;261(6):1127-1145. doi: 10.1007/s00709-024-01957-8. Epub 2024 May 20.
3
Curved crease origami and topological singularities at a cellular scale enable hyper-extensibility of .
bioRxiv. 2023 Aug 7:2023.08.04.551915. doi: 10.1101/2023.08.04.551915.
5
Basal body organization and cell geometry during the cell cycle in .
Mol Biol Cell. 2023 May 15;34(6):ar53. doi: 10.1091/mbc.E22-11-0508. Epub 2023 Jan 11.
6
Intracellular connections between basal bodies promote the coordinated behavior of motile cilia.
Mol Biol Cell. 2022 Sep 15;33(11):br18. doi: 10.1091/mbc.E22-05-0150. Epub 2022 Jun 29.
7
Microridge-like structures anchor motile cilia.
Nat Commun. 2022 Apr 19;13(1):2056. doi: 10.1038/s41467-022-29741-3.

本文引用的文献

1
Plastic cell morphology changes during dispersal.
iScience. 2021 Jul 27;24(8):102915. doi: 10.1016/j.isci.2021.102915. eCollection 2021 Aug 20.
2
Proteomic analysis of microtubule inner proteins (MIPs) in Rib72 null cells reveals functional MIPs.
Mol Biol Cell. 2021 Nov 1;32(21):br8. doi: 10.1091/mbc.E20-12-0786. Epub 2021 Aug 18.
4
Planar cell polarity induces local microtubule bundling for coordinated ciliary beating.
J Cell Biol. 2021 Jul 5;220(7). doi: 10.1083/jcb.202010034.
5
Intracellular coupling modulates biflagellar synchrony.
J R Soc Interface. 2021 Jan;18(174):20200660. doi: 10.1098/rsif.2020.0660. Epub 2021 Jan 13.
6
Swimming microorganisms acquire optimal efficiency with multiple cilia.
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30201-30207. doi: 10.1073/pnas.2011146117. Epub 2020 Nov 16.
7
C-Terminal Tail Polyglycylation and Polyglutamylation Alter Microtubule Mechanical Properties.
Biophys J. 2020 Dec 1;119(11):2219-2230. doi: 10.1016/j.bpj.2020.09.040. Epub 2020 Oct 31.
8
Architecture of the centriole cartwheel-containing region revealed by cryo-electron tomography.
EMBO J. 2020 Nov 16;39(22):e106246. doi: 10.15252/embj.2020106246. Epub 2020 Sep 20.
9
Magnetic cilia carpets with programmable metachronal waves.
Nat Commun. 2020 May 26;11(1):2637. doi: 10.1038/s41467-020-16458-4.
10
Sas4 links basal bodies to cell division via Hippo signaling.
J Cell Biol. 2020 Aug 3;219(8). doi: 10.1083/jcb.201906183.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验