Flaum Eliott, Prakash Manu
Graduate Program in Biophysics.
Department of Bioengineering.
bioRxiv. 2023 Aug 7:2023.08.04.551915. doi: 10.1101/2023.08.04.551915.
Eukaryotic cells undergo dramatic morphological changes during cell division, phagocytosis and motility. Fundamental limits of cellular morphodynamics such as how fast or how much cellular shapes can change without harm to a living cell remain poorly understood. Here we describe hyper-extensibility in the single-celled protist , a 40 m cell which is capable of reversible and repeatable extensions (neck-like protrusions) up to 1500 m in 30 seconds. We discover that a unique and intricate organization of cortical cytoskeleton and membrane enables these hyper-extensions that can be described as the first cellular scale curved crease origami. Furthermore, we show how these topological singularities including d-cones and twisted domain walls provide a geometrical control mechanism for the deployment of membrane and microtubule sheets as they repeatably spool thousands of time from the cell body. We lastly build physical origami models to understand how these topological singularities provide a mechanism for the cell to control the hyper-extensile deployable structure. This new geometrical motif where a cell employs curved crease origami to perform a physiological function has wide ranging implications in understanding cellular morphodynamics and direct applications in deployable micro-robotics.
真核细胞在细胞分裂、吞噬作用和运动过程中会经历显著的形态变化。细胞形态动力学的基本限制,比如细胞形状在不损害活细胞的情况下能多快或多大程度地改变,仍然知之甚少。在此,我们描述了单细胞原生生物中的超伸展性,这是一种40微米的细胞,能够在30秒内进行可逆且可重复的伸展(颈部样突起),长度可达1500微米。我们发现,皮质细胞骨架和膜的独特而复杂的组织结构使得这些超伸展成为可能,这种超伸展可被描述为首个细胞尺度的弯曲折痕折纸。此外,我们展示了这些拓扑奇点,包括d - 锥体和扭曲畴壁,如何在膜和微管片从细胞体重复缠绕数千次时,为它们的展开提供一种几何控制机制。我们最后构建了物理折纸模型,以理解这些拓扑奇点如何为细胞控制超伸展可展开结构提供一种机制。这种细胞利用弯曲折痕折纸来执行生理功能的新几何图案,在理解细胞形态动力学方面具有广泛的意义,并在可展开微机器人技术中有直接应用。