Mendez-Gonzalez Diego, Torres Vera Vivian, Zabala Gutierrez Irene, Gerke Christoph, Cascales Concepción, Rubio-Retama Jorge, G Calderón Oscar, Melle Sonia, Laurenti Marco
Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy Complutense University of Madrid, Plaza Ramon y Cajal 2, Madrid, 28040, Spain.
Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid, 28049, Spain.
Small. 2022 Feb;18(8):e2105652. doi: 10.1002/smll.202105652. Epub 2021 Dec 13.
The stunning optical properties of upconverting nanoparticles (UCNPs) have inspired promising biomedical technologies. Nevertheless, their transfer to aqueous media is often accompanied by intense luminescence quenching, partial dissolution by water, and even complete degradation by molecules such as phosphates. Currently, these are major issues hampering the translation of UCNPs to the clinic. In this work, a strategy is developed to coat and protect β-NaYF UCNPs against these effects, by growing a hydrophobic polymer shell (HPS) through miniemulsion polymerization of styrene (St), or St and methyl methacrylate mixtures. This allows one to obtain single core@shell UCNPs@HPS with a final diameter of ≈60-70 nm. Stability studies reveal that these HPSs serve as a very effective barrier, impeding polar molecules to affect UCNPs optical properties. Even more, it allows UCNPs to withstand aggressive conditions such as high dilutions (5 µg mL ), high phosphate concentrations (100 mm), and high temperatures (70 °C). The physicochemical characterizations prove the potential of HPSs to overcome the current limitations of UCNPs. This strategy, which can be applied to other nanomaterials with similar limitations, paves the way toward more stable and reliable UCNPs with applications in life sciences.
上转换纳米颗粒(UCNPs)令人惊叹的光学特性激发了诸多前景广阔的生物医学技术。然而,将它们转移至水性介质时,常常伴随着强烈的发光猝灭、被水部分溶解,甚至会被磷酸盐等分子完全降解。目前,这些都是阻碍UCNPs进入临床应用的主要问题。在这项工作中,开发了一种策略,通过苯乙烯(St)或St与甲基丙烯酸甲酯混合物的微乳液聚合来生长疏水聚合物壳(HPS),从而包覆和保护β-NaYF UCNPs免受这些影响。这使得人们能够获得最终直径约为60 - 70纳米的单核@壳UCNPs@HPS。稳定性研究表明,这些HPS起到了非常有效的屏障作用,阻止极性分子影响UCNPs的光学特性。更重要的是,它使UCNPs能够耐受诸如高稀释度(5微克/毫升)、高磷酸盐浓度(100毫摩尔)和高温(70℃)等苛刻条件。物理化学表征证明了HPS克服UCNPs当前局限性的潜力。这种可应用于具有类似局限性的其他纳米材料的策略,为在生命科学中应用的更稳定、可靠的UCNPs铺平了道路。