Suppr超能文献

一种安全、抗纤维化且可扩展的封装设备可支持胰岛素分泌细胞的长期功能。

A Safe, Fibrosis-Mitigating, and Scalable Encapsulation Device Supports Long-Term Function of Insulin-Producing Cells.

机构信息

Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.

Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.

出版信息

Small. 2022 Feb;18(8):e2104899. doi: 10.1002/smll.202104899. Epub 2021 Dec 13.

Abstract

Encapsulation and transplantation of insulin-producing cells offer a promising curative treatment for type 1 diabetes (T1D) without immunosuppression. However, biomaterials used to encapsulate cells often elicit foreign body responses, leading to cellular overgrowth and deposition of fibrotic tissue, which in turn diminishes mass transfer to and from transplanted cells. Meanwhile, the encapsulation device must be safe, scalable, and ideally retrievable to meet clinical requirements. Here, a durable and safe nanofibrous device coated with a thin and uniform, fibrosis-mitigating, zwitterionically modified alginate hydrogel for encapsulation of islets and stem cell-derived beta (SC-β) cells is reported. The device with a configuration that has cells encapsulated within the cylindrical wall, allowing scale-up in both radial and longitudinal directions without sacrificing mass transfer, is designed. Due to its facile mass transfer and low level of fibrotic reactions, the device supports long-term cell engraftment, correcting diabetes in C57BL6/J mice with rat islets for up to 399 days and SCID-beige mice with human SC-β cells for up to 238 days. The scalability and retrievability in dogs are further demonstrated. These results suggest the potential of this new device for cell therapies to treat T1D and other diseases.

摘要

将产生胰岛素的细胞进行封装并移植为 1 型糖尿病(T1D)患者提供了一种有前景的无需免疫抑制的治疗方法。然而,用于封装细胞的生物材料通常会引发异物反应,导致细胞过度生长和纤维组织沉积,从而降低了向移植细胞和从移植细胞的质量传递。同时,封装设备必须安全、可扩展,并且最好可回收,以满足临床需求。在此,报道了一种耐用且安全的纳米纤维装置,该装置涂有一层薄而均匀的、减轻纤维化的两性离子改性海藻酸盐水凝胶,用于包封胰岛和干细胞衍生的β(SC-β)细胞。设计了一种具有将细胞封装在圆柱壁内的结构的装置,允许在径向和纵向方向上进行放大,而不会牺牲质量传递。由于其易于传递质量和低纤维化反应水平,该装置支持长期细胞植入,用大鼠胰岛纠正 C57BL6/J 小鼠的糖尿病长达 399 天,用人 SC-β 细胞纠正 SCID-beige 小鼠的糖尿病长达 238 天。在狗中的可扩展性和可回收性也得到了进一步证明。这些结果表明,这种新装置在细胞治疗治疗 T1D 和其他疾病方面具有潜力。

相似文献

1
2
Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes.
Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):E263-E272. doi: 10.1073/pnas.1708806115. Epub 2017 Dec 26.
3
A nanofibrous encapsulation device for safe delivery of insulin-producing cells to treat type 1 diabetes.
Sci Transl Med. 2021 Jun 2;13(596). doi: 10.1126/scitranslmed.abb4601.
4
A Zwitterionic Polyurethane Nanoporous Device with Low Foreign-Body Response for Islet Encapsulation.
Adv Mater. 2021 Oct;33(39):e2102852. doi: 10.1002/adma.202102852. Epub 2021 Aug 6.
6
Prevascularized Retrievable Hybrid Implant to Enhance Function of Subcutaneous Encapsulated Islets.
Tissue Eng Part A. 2022 Mar;28(5-6):212-224. doi: 10.1089/ten.TEA.2020.0179. Epub 2020 Nov 28.
7
Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation.
Nat Commun. 2019 Nov 20;10(1):5262. doi: 10.1038/s41467-019-13238-7.
10
Harnessing the Foreign Body Reaction in Marginal Mass Device-less Subcutaneous Islet Transplantation in Mice.
Transplantation. 2016 Jul;100(7):1474-9. doi: 10.1097/TP.0000000000001162.

引用本文的文献

4
Islet Cell Replacement and Regeneration for Type 1 Diabetes: Current Developments and Future Prospects.
BioDrugs. 2025 Mar;39(2):261-280. doi: 10.1007/s40259-025-00703-7. Epub 2025 Feb 7.
5
Advancements and Challenges in Immune Protection Strategies for Islet Transplantation.
J Diabetes. 2025 Jan;17(1):e70048. doi: 10.1111/1753-0407.70048.
6
Subcutaneous Implantation of Open Microwell Islet Delivery Devices in Pigs.
Surg Innov. 2025 Apr;32(2):141-148. doi: 10.1177/15533506241306491. Epub 2024 Dec 13.
7
Hydrogel-Encapsulated Pancreatic Islet Cells as a Promising Strategy for Diabetic Cell Therapy.
Research (Wash D C). 2024 Jul 4;7:0403. doi: 10.34133/research.0403. eCollection 2024.
8
Pancreatic islet transplantation: current advances and challenges.
Front Immunol. 2024 Jun 3;15:1391504. doi: 10.3389/fimmu.2024.1391504. eCollection 2024.
9
Recent Advances in Alginate-Based Hydrogels for Cell Transplantation Applications.
Pharmaceutics. 2024 Mar 27;16(4):469. doi: 10.3390/pharmaceutics16040469.
10
Encapsulation and immune protection for type 1 diabetes cell therapy.
Adv Drug Deliv Rev. 2024 Apr;207:115205. doi: 10.1016/j.addr.2024.115205. Epub 2024 Feb 13.

本文引用的文献

2
A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells.
Nat Biomed Eng. 2020 Aug;4(8):814-826. doi: 10.1038/s41551-020-0538-5. Epub 2020 Mar 30.
3
Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells.
Nat Biotechnol. 2020 Apr;38(4):460-470. doi: 10.1038/s41587-020-0430-6. Epub 2020 Feb 24.
4
Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation.
Nat Commun. 2019 Nov 20;10(1):5262. doi: 10.1038/s41467-019-13238-7.
5
Engineering the vasculature for islet transplantation.
Acta Biomater. 2019 Sep 1;95:131-151. doi: 10.1016/j.actbio.2019.05.051. Epub 2019 May 23.
6
Charting cellular identity during human in vitro β-cell differentiation.
Nature. 2019 May;569(7756):368-373. doi: 10.1038/s41586-019-1168-5. Epub 2019 May 8.
8
Macroencapsulated Human iPSC-Derived Pancreatic Progenitors Protect against STZ-Induced Hyperglycemia in Mice.
Stem Cell Reports. 2019 Apr 9;12(4):787-800. doi: 10.1016/j.stemcr.2019.02.002. Epub 2019 Mar 7.
9
Nanotechnology in cell replacement therapies for type 1 diabetes.
Adv Drug Deliv Rev. 2019 Jan 15;139:116-138. doi: 10.1016/j.addr.2019.01.013. Epub 2019 Feb 2.
10
Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells.
Nat Cell Biol. 2019 Feb;21(2):263-274. doi: 10.1038/s41556-018-0271-4. Epub 2019 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验