Suppr超能文献

一种用于安全递送产生胰岛素细胞的纳米纤维包封装置,用于治疗 1 型糖尿病。

A nanofibrous encapsulation device for safe delivery of insulin-producing cells to treat type 1 diabetes.

机构信息

Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.

Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

Sci Transl Med. 2021 Jun 2;13(596). doi: 10.1126/scitranslmed.abb4601.

Abstract

Transplantation of stem cell-derived β (SC-β) cells represents a promising therapy for type 1 diabetes (T1D). However, the delivery, maintenance, and retrieval of these cells remain a challenge. Here, we report the design of a safe and functional device composed of a highly porous, durable nanofibrous skin and an immunoprotective hydrogel core. The device consists of electrospun medical-grade thermoplastic silicone-polycarbonate-urethane and is soft but tough (15 megapascal at a rupture strain of >2). Tuning the nanofiber size to less than ~500 nanometers prevented cell penetration while maintaining maximum mass transfer and decreased cellular overgrowth on blank (cell-free) devices to as low as a single-cell layer (3 micrometers thick) when implanted in the peritoneal cavity of mice. We confirmed device safety, indicated as continuous containment of proliferative cells within the device for 5 months. Encapsulating syngeneic, allogeneic, or xenogeneic rodent islets within the device corrected chemically induced diabetes in mice and cells remained functional for up to 200 days. The function of human SC-β cells was supported by the device, and it reversed diabetes within 1 week of implantation in immunodeficient and immunocompetent mice, for up to 120 and 60 days, respectively. We demonstrated the scalability and retrievability of the device in dogs and observed viable human SC-β cells despite xenogeneic immune responses. The nanofibrous device design may therefore provide a translatable solution to the balance between safety and functionality in developing stem cell-based therapies for T1D.

摘要

干细胞衍生的β(SC-β)细胞移植是治疗 1 型糖尿病(T1D)的一种很有前途的疗法。然而,这些细胞的输送、维持和回收仍然是一个挑战。在这里,我们报告了一种安全且功能齐全的设备的设计,该设备由高度多孔、耐用的纳米纤维皮肤和免疫保护水凝胶核心组成。该设备由电纺医用级热塑性硅酮-聚碳酸酯-聚氨酯组成,柔软但坚韧(断裂应变大于 2 时为 15 兆帕斯卡)。将纳米纤维的尺寸调至小于 500 纳米可防止细胞渗透,同时保持最大的传质,并将细胞在空白(无细胞)设备上的过度生长降低至单层细胞(约 3 微米厚),当植入小鼠的腹腔时。我们证实了设备的安全性,表明增殖细胞在 5 个月内持续包含在设备内。将同种异体、异种或异种鼠胰岛包封在设备内纠正了化学诱导的糖尿病,细胞的功能可持续长达 200 天。该设备支持人 SC-β细胞的功能,并在免疫缺陷和免疫功能正常的小鼠中,分别在植入后 1 周内逆转糖尿病,持续时间长达 120 和 60 天。我们在犬中证明了该设备的可扩展性和可回收性,并观察到尽管存在异种免疫反应,但仍有存活的人 SC-β细胞。因此,纳米纤维设备设计可能为 1 型糖尿病干细胞治疗的安全性和功能性之间的平衡提供一种可转化的解决方案。

相似文献

引用本文的文献

10
Emerging approaches for the development of artificial islets.人工胰岛开发的新兴方法。
Smart Med. 2024 Mar 7;3(2):e20230042. doi: 10.1002/SMMD.20230042. eCollection 2024 Jun.

本文引用的文献

1
Hydrogels in Emerging Technologies for Type 1 Diabetes.1型糖尿病新兴技术中的水凝胶
Chem Rev. 2021 Sep 22;121(18):11458-11526. doi: 10.1021/acs.chemrev.0c01062. Epub 2020 Dec 28.
3
Islet encapsulation.胰岛封装。
J Mater Chem B. 2018 Nov 14;6(42):6705-6722. doi: 10.1039/c8tb02020e. Epub 2018 Oct 11.
6
Engineering the vasculature for islet transplantation.工程化血管用于胰岛移植。
Acta Biomater. 2019 Sep 1;95:131-151. doi: 10.1016/j.actbio.2019.05.051. Epub 2019 May 23.
7
Oxygenation strategies for encapsulated islet and beta cell transplants.包裹胰岛和β细胞移植的氧合策略。
Adv Drug Deliv Rev. 2019 Jan 15;139:139-156. doi: 10.1016/j.addr.2019.05.002. Epub 2019 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验