Department of Urology, Stanford University School of Medicine, Stanford, California 94305, United States.
Acc Chem Res. 2022 Jan 18;55(2):123-133. doi: 10.1021/acs.accounts.1c00462. Epub 2021 Dec 13.
Antimicrobial resistance is a global threat that if left unchecked could lead to 10 million annual mortalities by 2050. One factor contributing to the rise of multi-drug-resistant (MDR) pathogens is the reliance on traditional culture-based pathogen identification (ID) and antimicrobial susceptibility testing (AST) that typically takes several days. This delay of objective pathogen ID and AST information to inform clinical decision making results in clinicians treating patients empirically often using first-line, broad-spectrum antibiotics, contributing to the misuse/overuse of antibiotics. To combat the rise in MDR pathogens, there is a critical demand for rapid ID and AST technologies. Among the advances in ID and AST technologies in the past decade, single-cell diagnostic technologies powered by droplet microfluidics offer great promise due to their potential for high-sensitivity detection and rapid turnaround time. Our laboratory has been at the forefront of developing such technologies and applying them to diagnosing urinary tract infections (UTIs), one of the most common infections and a frequent reason for the prescription of antimicrobials. For pathogen ID, we first demonstrated the highly sensitive, amplification-free detection of single bacterial cells by confining them in picoliter-scale droplets and detection with fluorogenic peptide nucleic acid (PNA) probes that target their 16S rRNA (rRNA), a well-characterized marker for phylogenic classification. We subsequently improved the PNA probe design and enhanced detection sensitivity. For single-cell AST, we first employed a growth indicator dye and engineered an integrated device that allows us to detect growth from single bacterial cells under antibiotic exposure within 1 h, equivalent to two to three bacterial replications. To expand beyond testing a single antibiotic condition per device, a common limitation for droplet microfluidics, we developed an integrated programmable droplet microfluidic device for scalable single-cell AST. Using the scalable single-cell AST platform, we demonstrated the generation of up to 32 droplet groups in a single device with custom antibiotic titers and the capacity to scale up single-cell AST, and providing reliable pathogen categories beyond a binary call embodies a critical advance. Finally, we developed an integrated ID and AST platform. To this end, we developed a PNA probe panel that can identify nearly 90% of uropathogens and showed the quantitative detection of 16S rRNA from single bacterial cells in droplet-enabled AST after as little as 10 min of antibiotic exposure. This platform achieved both ID and AST from minimally processed urine samples in 30 min, representing one of the fastest turnaround times to date. In addition to tracing the development of our technologies, we compare them with contemporary research advances and offer our perspectives for future development, with the vision that single-cell ID and AST technologies powered by droplet microfluidics can indeed become a useful diagnostic tool for combating antimicrobial resistance.
抗微生物药物耐药性是一个全球性威胁,如果不加以控制,到 2050 年可能导致每年 1000 万人死亡。多药耐药(MDR)病原体增加的一个因素是依赖传统的基于培养的病原体鉴定(ID)和药敏试验(AST),这通常需要数天时间。这种对客观病原体 ID 和 AST 信息的延迟,导致临床医生在进行临床决策时经常根据经验治疗患者,通常使用一线、广谱抗生素,导致抗生素的滥用/过度使用。为了对抗 MDR 病原体的上升,迫切需要快速的 ID 和 AST 技术。在过去十年中 ID 和 AST 技术的进步中,基于液滴微流控的单细胞诊断技术具有很大的潜力,因为它们具有高灵敏度检测和快速周转时间的潜力。我们的实验室一直处于开发此类技术并将其应用于诊断尿路感染(UTI)的最前沿,UTI 是最常见的感染之一,也是开处抗生素的常见原因。对于病原体 ID,我们首先通过将其限制在皮升级别的液滴中并使用针对其 16S rRNA(rRNA)的荧光肽核酸(PNA)探针进行检测,从而证明了单个细菌细胞的高灵敏度、无扩增检测,rRNA 是一种用于系统发育分类的特征标记。随后,我们改进了 PNA 探针设计并提高了检测灵敏度。对于单细胞 AST,我们首先采用了生长指示剂染料,并设计了一种集成设备,使我们能够在抗生素暴露下从单个细菌细胞中检测到 1 小时内的生长,相当于两个到三个细菌复制。为了扩展超出每个设备测试单个抗生素条件的范围,这是液滴微流控的常见限制,我们开发了一个集成的可编程液滴微流控设备,用于可扩展的单细胞 AST。使用可扩展的单细胞 AST 平台,我们证明了在单个设备中生成多达 32 个液滴组的能力,具有自定义抗生素滴度,并能够扩展单细胞 AST,并且提供了可靠的病原体类别,超越了二进制调用,这是一个关键的进步。最后,我们开发了一个集成的 ID 和 AST 平台。为此,我们开发了一个 PNA 探针面板,该面板可以鉴定近 90%的尿路病原体,并显示在滴度辅助 AST 中,仅在抗生素暴露 10 分钟后即可从单个细菌细胞中定量检测 16S rRNA。该平台在 30 分钟内从最小处理的尿液样本中实现了 ID 和 AST,这是迄今为止最快的周转时间之一。除了追踪我们技术的发展之外,我们还将它们与当代研究进展进行了比较,并为未来的发展提出了我们的观点,我们的愿景是,基于液滴微流控的单细胞 ID 和 AST 技术确实可以成为对抗抗微生物药物耐药性的有用诊断工具。