Suppr超能文献

通过考察适应性权衡,区分通过不同机制抵抗药物的突变体。

Distinguishing mutants that resist drugs via different mechanisms by examining fitness tradeoffs.

机构信息

Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States.

School of Life Sciences, Arizona State University, Tempe, United States.

出版信息

Elife. 2024 Sep 10;13:RP94144. doi: 10.7554/eLife.94144.

Abstract

There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.

摘要

人们越来越关注设计多药物疗法,利用权衡来对抗耐药性。权衡在进化中很常见,当例如,对一种药物的耐药性导致对另一种药物的敏感性时,就会出现权衡。关于权衡是否可靠,特别是,提供对给定药物的耐药性的突变体是否都遭受类似的权衡,仍然存在重大问题。这个问题很困难,因为在临床上观察到的耐药突变体,甚至在受控的实验室环境中进化的突变体,往往偏向于那些提供大的适应性优势的突变体。因此,提供耐药性的突变(和机制)可能比当前数据所表明的更为多样化。在这里,我们利用谱系追踪进行进化实验,以捕获在氟康唑(一种常见的抗真菌药物)中赋予酵母细胞适应性优势的更全面的突变体谱。然后,我们在 12 种环境中对 774 个进化突变体的适应性权衡进行了量化,发现这些突变体可以分为具有不同特征性权衡的类。它们独特的权衡可能意味着每个突变体组通过不同的潜在机制影响适应性。我们发现的一些分组令人惊讶。例如,我们发现一些抵抗单一药物的突变体不抵抗它们的组合,而另一些则抵抗。并且同一基因的一些突变体具有与其他突变体不同的权衡。一方面,这些发现表明在设计多药物治疗时,依赖一致或直观的权衡存在困难。另一方面,通过证明数百个适应性突变可以减少到具有特征性权衡的少数几个组,我们的发现可能会支持利用权衡来对抗耐药性的多药物策略。更一般地说,通过将可能通过类似潜在机制影响适应性的突变体分组,我们的工作指导了映射突变表型效应的努力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f430/11386965/61f154906fb6/elife-94144-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验